

PAN1070 NDK **开发套件使用手册** 发布 0.5.0

磐启微电子 PAN1070 项目组 2024 年 06 月 07 日

Table of contents

1	快速		1
	1.1	NDK 快速入门指南	1
		1.1.1 1 概述	1
		1.1.2 2 PAN10xx EVB 介绍	1
		1.1.3 3 PAN1070 NDK 开发环境确认	1
	1.2	NDK 开发环境介绍	2
		1.2.1 开发 IDE	2
		1.2.2 Keil Flash 下载程序	2
	1.3	NDK 整体框架介绍	2
		1.3.1 1 简介	4
		1.3.2 2 NDK 目录结构	4
	1.4	Nimble 简介	6
		1.4.1 支持硬件	7
		1.4.2 概览	7
		1.4.3 应用示例	7
		1.4.4 API 接口	7
2	硬件		9
	2.1	PAN10xx EVB 介绍	9
		2.1.1 1 概述	9
		2.1.2 2 开发板硬件资源	9
	2.2	PAN10xx 硬件参考设计	29
		2.2.1 1 概述	29
		2.2.2 2 原理图设计建议	29
		2.2.3 3 PCB 设计建议	40
		2.2.4 4 BOM	48
3	演示		55
Ŭ	3.1	蓝牙例程	55
		3.1.1 BLE Central and Peripheral	55
		3.1.2 BLE Central	57
		3.1.3 BLE MULTI ROLE	60
		3.1.4 BLE Distance	62
		3.1.5 BLE Peripheral ENC	63
		3.1.6 BLE Peripheral HR	67
		3.1.7 BLE Peripheral HR OTA	69
		3.1.8 BLE Peripheral Throughput Test	75
	3.2	解决方案	76
		3.2.1 BLE HID Selfie	76
		3.2.2 Solution: BLE HID Uart Mult Roles	79
		3.2.3 Solution: BLE Mouse	83
		3.2.4 Solution: BLE Panchip-CTE Beacon	84
		3.2.5 BLE PRF SAMPLE	86
		3.2.6 Solution: BLE RGB Light	89
		3.2.7 BLE Vehicles Key	90
		3.2.8 Solution: Electronic Shelf Label	92
		3.2.9 Solution: Multimode Mouse	95

	3.3	3.2.10 Solution: Multimode Mouse Dongle	96 98				
Δ	工会提商 00						
т	<u>л</u> ж 4 1	NDK Configuration 开生比应	00				
	4.1	ADR Comgutation 开发作用	99				
		4.1.1 1. 月泉川和 · · · · · · · · · · · · · · · · · · ·	99				
		4.1.2 2. <u>能自</u> , (就)	99				
	4.9	4.1.3 3. pan107X 相 pan101X 上住能直以及区别 1 NDV Ang 开始地声	.00				
	4.2	NDK App 开友指的	.00				
		4.2.1 1 基础指标	.02				
	4.0	4.2.2 2 开反流程	.02				
	4.3	NDK 低切耗升友指南	.13				
		4.3.1 1 低功耗模式	.14				
		4.3.2 2 开发流程	14				
		4.3.3 3 低功耗注意事项	.18				
	4.4	NDK RAM 使用情况分析以及优化指南	18				
		4.4.1 1 如何查看 KEIL 的 RAM 和 Flash 使用情况1	18				
		4.4.2 2关于堆空间的使用说明	19				
	4.5	NDK Mcu Boot	21				
		4.5.1 1. 背景介绍	21				
		4.5.2 2 flash 区域的划分	21				
		453 21 Boot Loader mode	22				
		45.4 3 BootLoader 升级资程和筆吹 1	24				
		4.5.4 5 DOULDOALCI 并现他在们来的	24				
		4.0.0 4. ualt 开级评胜	20				
		4.5.0 0 USB dfu 开级序牌	21				
		4.5.7 6 PRF ota 开致详解	.29				
	4.6	NDK 常见问题(FAQs)	.29				
		4.6.1 Q1:为什么我使用 JLink (SWD) 烧录一个上程后,无法(或很难)再次烧录? .1	29				
Б	具动动	1	91				
5	量产 5-1	测试 1	31				
5	量产 5.1	测试	31				
5	量产 5.1	测试 量产烧录	.31 .31 .31				
5	量产 5.1	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1	.31 .31 .31 .32				
5	量产 5.1 5.2	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1	31 31 31 32 33				
5	量产 5.1 5.2	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1	31 31 32 33 34				
5	量产 5.1 5.2	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1	.31 .31 .32 .33 .34 .34				
5	量产 5.1 5.2	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 STEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1	31 31 32 33 34 34 34				
5	量产 5.1 5.2	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 STEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1	.31 .31 .32 .33 .34 .34 .34 .34				
5	量产 5.1 5.2 5.3	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 ST.12 2. 量产烧录工具 1 5.1.2 2. 量产烧录工具 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1	.31 .31 .32 .33 .34 .34 .34 .34 .34				
5	量产 5.1 5.2 5.3 5.4	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 ST.2 2. 量产烧录工具 1 St.2 2. 新境要求 1 5.2.2 2. 环境要求 1 5.2.3 3. RF 测试固件说明 1 5.2.4 4. 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1	.31 .31 .32 .33 .34 .34 .34 .34 .34 .34 .34				
5	量产 5.1 5.2 5.3 5.4	測试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 S.1.2 2. 量产烧录工具 1 S.1.2 2. 量产烧录工具 1 5.1.2 2. 量产烧录工具 1 5.2.1 1. 功能概述 1 5.2.2 2. 环境要求 1 5.2.3 3. RF 测试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1	.31 .31 .32 .33 .34 .34 .34 .34 .34 .34 .34 .34 .34				
5	量产 5.1 5.2 5.3 5.4	J 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1	.31 .31 .32 .33 .34 .34 .34 .34 .34 .34 .34 .44				
5	量产; 5.1 5.2 5.3 5.4 开发;	测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 T具 1	.31 .31 .32 .33 .34 .34 .34 .34 .34 .34 .34 .44				
5	量产; 5.1 5.2 5.3 5.4 开发; 6.1	测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 TLL 1 PAN107x Toolbox 工具箱 1	.31 .31 .32 .33 .34 .34 .34 .34 .34 .34 .34 .44 .44				
5	量产; 5.1 5.2 5.3 5.4 开发; 6.1	测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 9 anchip 2.4G OTA 工具 1 1 1.0 TA 升级 1 1 1.0 TA 升级 1 1 1.1 1.1 10 BWR 面洗择 1	.31 .31 .32 .33 .34 .34 .34 .34 .34 .36 .44 .44 .44 .47 .47 .47				
5	量产; 5.1 5.2 5.3 5.4 开发; 6.1	测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 5.2.4 1 1 9 anchip 2.4G OTA 工具 1 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 1 PAN107x Toolbox 工具箱 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1	31 31 32 33 34 34 34 34 34 34 34 44 44 47 47 47				
5	量产; 5.1 5.2 5.3 5.4 开发; 6.1	测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 測试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 Panchip 2.4G OTA 工具 1 1 5.4.1 1. OTA 升级 1 T 1 1 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1 6.1.3 2. 设备固性升级 1	31 31 32 33 34 34 34 34 34 34 34				
5	量产; 5.1 5.2 5.3 5.4 开发; 6.1	>测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 T 1. 0TA 开级 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1 6.1.3 2. 设备固件升级 1	31 31 32 33 34 34 34 34 34 34 34				
5	量产; 5.1 5.2 5.3 5.4 开发; 6.1	测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 T 具 1 PAN107x Toolbox 工具箱 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1 6.1.3 2. 设备固件升级 1 6.1.4 3. 芯片引脚规划 1 6.1.4 3. 芯片引脚规划 1	31 31 32 33 34 34 34 34 34 34 44 4				
6	量产; 5.1 5.2 5.3 5.4 开发; 6.1	調試 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 T T 1 PAN107x Toolbox 工具箱 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1 6.1.3 2. 设备固件升级 1 6.1.4 3. 芯片引脚规划 1 6.1.5 4.RF 信号采集 1	31 31 32 33 34 34 34 34 34 34 34				
5 6 7	量产; 5.1 5.2 5.3 5.4 开发; 6.1 其他	喇试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 T 工具 1 PAN107x Toolbox 工具箱 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1 6.1.3 2. 设备固件升级 1 6.1.4 3. 芯片引脚规划 1 6.1.5 4.RF 信号采集 1	31 31 32 33 34 34 34 34 34 34 34				
5 6 7 8	量产; 5.1 5.2 5.3 5.4 开发 6.1 其他	测试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 Panchip 2.4G OTA 工具 1 1 5.4.1 1. OTA 升级 1 T具 1 5.4.1 1. OTA 升级 T具 1 1 1 PAN107x Toolbox 工具箱 1 1 6.1.1 功能界面选择 1 1 6.1.3 2. 设备固件升级 1 1 6.1.4 3. 芯片引脚规划 1 1 1 6.1.5 4.RF 信号采集 1 1 文档 1 1 1 1 1.5 4.RF 信号采集 1 1	31 31 32 33 34 34 34 34 34 34 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 53 55 53 55 53 55				
5 6 7 8	量产; 5.1 5.2 5.3 5.4 开合.1 其更。	喇试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1. 功能概述 1 5.2.2 2. 环境要求 1 5.2.3 3. RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 TL PAN107x Toolbox 工具箱 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1 6.1.3 2. 设备固件升级 1 6.1.4 3. 芯片引脚规划 1 6.1.5 4.RF 信号采集 1 文档 1 1 日志 1 1 PAN1070 NDK ±0.5.0 1	$ \begin{array}{c} 31 \\ 31 \\ 32 \\ 33 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 44 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 49 \\ 49 \\ 49 \\ 45 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ $				
5 6 7 8	量产; 5.1 5.2 5.3 5.4 开发 6.1 其他 8.1	喇试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 測试固件说明 1 5.2.4 4 演示说明 1 5.2.3 3 RF 測试固件说明 1 5.2.4 4 演示说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 Panchip 2.4G OTA 工具 1 1 5.4.1 1. OTA 升级 1 T 1. OTA 升级 1 1 F 1 1 1 F 1 1 1 1 CL 1. OTA 升级 1 1 1 6.1.1 功能界面选择 1 1 1 6.1.2 1. RF 测试 1 1 1 6.1.3 2. 设备固件升级 1 1 1 6.1.4 3. 芯片引脚规划 1 1 1 1	$ \begin{array}{c} 31 \\ 31 \\ 32 \\ 33 \\ 34 \\ 44 \\ 47 \\ 47 \\ 47 \\ 47 \\ 48 \\ 49 \\ 49 \\ 53 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ $				
5 6 7 8	量产; 5.1 5.2 5.3 5.4 开发 6.1 其他 8.1	喇试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 Panchip 2.4G OTA 工具 1 1 5.4.1 1. OTA 升级 1 TL PAN107x Toolbox 工具箱 1 6.1.1 功能界面选择 1 6.1.2 1. RF 测试 1 6.1.3 2. 设备固件升级 1 6.1.4 3. 芯片引脚规划 1 6.1.5 4. RF 信号采集 1 大档 1 1 PAN1070 NDK v0.5.0 1 1 8.1.1 1. SDK 1 9.12 Ø. Ø. DVK 1 1	$ \begin{array}{c} 31 \\ 31 \\ 32 \\ 33 \\ 34 \\ 44 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 48 \\ 49 \\ 49 \\ 45 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ $				
5 6 7 8	量产; 5.1 5.2 5.3 5.4 开发 6.1 其更新 8.1	喇试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 測试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 Panchip 2.4G OTA 工具 1 1 5.4.1 1. OTA 升级 1 TL 7 1 1 Panchip 2.4G OTA 工具 1 1 5.4.1 1. OTA 升级 1 1 TL PAN107x Toolbox 工具箱 1 1 6.1.2 1. RF 测试 1 1 6.1.3 2. 设备固件升级 1 1 6.1.4 3. 芯片引脚规划 1 1 6.1.5 4.RF 信号采集 1 1 PAN1070 NDK v0.5.0 1 1 1 8.1.1 1. SDK 1 1 1 8.1.2 2. HDK 1 1 1 9.10	$ \begin{array}{c} 31 \\ 31 \\ 32 \\ 33 \\ 34 \\ 44 \\ 47 \\ 47 \\ 48 \\ 49 \\ 49 \\ 45 \\ 55 \\$				
5 6 7 8	量产; 5.1 5.2 5.3 5.4 开发 6.1 其更新 8.1	喇试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 5.2.2 2 环境要求 1 5.2.3 3 RF 測试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 Panchip 2.4G OTA 工具 1 5.4.1 1. OTA 升级 1 TL 6.1.2 1. RF 测试 1 6.1.4 3. 芯片引脚规划 1 1 6.1.5 4. RF 信号采集 1 1 文档 1 1 1 1 PAN1070 NDK v0.5.0 1 1 1 1 8.1.1 1. SDK 1 1 1 8.1.3 3. MCU 1 1 1	$ \begin{array}{c} 31 \\ 31 \\ 32 \\ 33 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 44 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 45 \\ 55 \\$				
5 6 7 8	量产 5.1 5.2 5.3 5.4 开货 6.1 其 更 8.1	喇试 1 量产烧录 1 5.1.1 1. 芯片硬件系统说明 1 5.1.2 2. 量产烧录工具 1 RF TEST 1 5.2.1 1 功能概述 1 5.2.2 2 环境要求 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 5.2.3 3 RF 测试固件说明 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 5.2.4 4 演示说明 1 JFlash 烧录 1 1 Fachtip 2.4G OTA 工具 1 1 5.4.1 1. OTA 升级 1 TL PAN107x Toolbox 工具箱 1 6.1.1 功能界面选择 1 6.1.2 1. RF 測试 1 6.1.3 2. 设备固件升级 1 6.1.4 3. 芯片引脚规划 1 6.1.5 4.RF 信号采集 1 文档 1 1 PAN1070 NDK v0.5.0 1 1 8.1.1 1. SDK 1 8.1.2 2. HDK 1 </td <td>$\begin{array}{c} 31 \\ 31 \\ 32 \\ 33 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 44 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 45 \\ 55 \\$</td>	$ \begin{array}{c} 31 \\ 31 \\ 32 \\ 33 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 44 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 45 \\ 55 \\$				

	8.1.6	6. ISSUES
8.2	PAN1	70 NDK v0.4.0
	8.2.1	1. SDK
	8.2.2	2. HDK
	8.2.3	3. MCU
	8.2.4	4. DOC
	8.2.5	5. TOOLS
	8.2.6	6. ISSUES
8.3	PAN1	70 NDK v0.3.0
	8.3.1	1. SDK
	8.3.2	2. HDK
	8.3.3	3. MCU
	8.3.4	4. DOC
	8.3.5	5. TOOLS
8.4	PAN1	70 NDK v0.2.0
	8.4.1	1. SDK
	8.4.2	2. HDK
	8.4.3	3. MCU
	8.4.4	4. DOC
	8.4.5	5. TOOLS
8.5	PAN1	70 NDK v0.1.0
	8.5.1	1. SDK
	8.5.2	2. HDK
	8.5.3	3. MCU
	8.5.4	4. DOC
	8.5.5	5. TOOLS
	8.5.6	6. 已知问题

Chapter 1

快速人门

1.1 NDK 快速人门指南

1.1.1 1 概述

本文是 PAN107x NDK 开发的快速入门指引,旨在帮助使用者快速入门 PAN1070 NDK 的相关开发。

1.1.2 2 PAN10xx EVB 介绍

PAN10xx EVB (EValuation Board) 是 Panchip 提供给 PAN107x/PAN101x 芯片用户的一系列开发板的 总称,目前包括 2 种 EVB 核心板,1 种 EVB 底板:

开发板名称	SoC 型号	封装	Flash 大小	SRAM 大小
PAN1070UA1A EVB 核心板	PAN1070UA1A	QFN32 $(4x4)$	512 KB	48 KB
PAN1010S9FA EVB 核心板	PAN1010S9FA	SSOP24	256 KB	16 KB
PAN10xx EVB 底板	-	-	-	-

关于 PAN10xx EVB 开发板硬件的详细介绍,请参考PAN10xx EVB 硬件资源介绍。

1.1.3 3 PAN1070 NDK 开发环境确认

3.1 PC 环境检查

请确认 KEIL(推荐 5.25 版本以上), PAN107x SWD 下载与调试依赖的 FLM 文件, Jlink 设备等准备 就绪。

注: PAN107x/PAN101x 芯片的 FLM 文件位于: <PAN1070-NDK/03_MCU/mcu_misc> 目录, 使用前需要将其拷贝到 Keil 安装目录 (例如 C:\Keil_v5\ARM\Flash) 下

3.2 快速编译运行一个简单的例程

硬件接线准备,请确认您已经将 PAN107x EVB 核心板的:

- 1. SWD (P00: SWD_CLK, P01: SWD_DAT, GND: SWD_GND) 接口通过 JLink 连接至 PC
- 2. SoC UART0 接口通过板上的 USB 转串口模块连接至 PC
 - UARTO-Tx: P16, UARTO-Rx: P17
- 3. 打开一个 Sample 工程, 例如 03_MCU\mcu_samples\FMC 下 Keil 子目录中的工程文件 FMC.uvprojx

- 4. 点击 Build 编译按钮, 然后点击 Download 按钮进行下载(若无法正常下载, 请检查 FLM 文件是 否正常载入)
- 5. 下载完成可以通过串口观察 log 输出(串口波特率: 921600)

注:若您操作的 EVB 核心板主控为 SSOP24 封装的 PAN101x 芯片,则 SDK 例程中默认的 UART 引脚为:UART0-Tx: P11, UART0-Rx: P12

1.2 NDK 开发环境介绍

1.2.1 **开发** IDE

KEIL 官方下载连接:

https://www.keil.com/download/product/

图 1: Keil 下载 MDK-Arm 版本

当前 NDK 开发使用的工具为 KEIL, 开发中使用的版本为 5.25, 所以建议使用该版本及以上版本。 Keil 使用版本如下:

1.2.2 Keil Flash 下载程序

为使用 Keil + Jlink 烧录代码,请将此目录下的 FLM 文件,拷贝到 Keil MDK 安装目录下,如:

• C:\Keil_v5\ARM\Flash

相关 FLM 文件默认在 SDK 中路径为 pan1070-ndk\03_MCU\mcu_misc, keil 的工程配置根据芯片的类型选择不同的 FLM 文件

- PAN107x_508KB_FLASH.FLM
- PAN101x_252KB_FLASH.FLM

1.3 NDK 整体框架介绍

About µVision						
μVision V5.25.2.0 Copyright (C) 2018 ARM Ltd and ARM Germany GmbH. All rights reserved.						
Toolchain: Toolchain Path: C Compiler: Assembler: Linker/Locator: Library Manager: Hex Converter: CPU DLL: Dialog DLL: Target DLL: Dialog DLL:	MDK-ARM Professio D:\Keil_v5\ARM\ARM Armcc.exe Armasm.exe ArmLink.exe ArmAr.exe FromElf.exe SARMCM3.DLL DARMCM1.DLL Segger\JL2CM3.dll TARMCM1.DLL	nal Version: 5.25.2.0 CC\Bin V5.06 update 6 (build 750) V5.06 update 6 (build 750) V5.06 update 6 (build 750) V5.06 update 6 (build 750) V5.06 update 6 (build 750) V5.25.2.0 V1.19.1.0 V2.99.29.0 V1.14.0.0				
This product is licen	sed to:					
This product is protected by copyright law and international treaties. Unauthorized reproduction or distribution of this program, or any portion of it may result in severe civil and criminal penalties.						
Keil Software, the Keil Software Logo, and $\mu V \text{ision}$ are registered trademarks of ARM Limited						
XERCES, an XML parser (xerces-c_3.0.dll) is licensed to you under the Apache Software License, Version 2.0.						
Scintilla, an editor tool (UvEdit.dll) which enables editing of source code is licensed to you under the Historical Permission Notice and Disclaimer, an open source license approved by the Open Source Initiative.						

图 2: Keil 版本

1.3.1 1 简介

PAN1070 NDK 是基于开源蓝牙协议栈 Nimble(Host) 以及开源系统 FreeRTOS,以及私有 BLE Controller 实现完成。Nimble 和 FreeRTOS 均开发源码,BLE Controller 通过标准化 HCI 接口实现。需要 注意的是 NDK 依赖的 IDE 主要是 KEIL。

图 3: NDK 整体结构

1.3.2 2 NDK 目录结构

PAN1070 NDK 源码树结构如下:

```
<home>/01_SDK
modules
hal
nimble
README.md
controller
host
lib
os
samples
```

- moudules/hal: 与 ZDK 同根同源,属于外设和 driver 相关的硬件抽象层
- README.md: nimble 基本介绍
- controller: nimble 工程所需要的 controller 相关头文件
- host: nimble host 协议栈所在的主要目录,同时包含 kv_store 组件,该组件主要用于 flash 数据 库存储。
- 1ib:该文件包含两个版本 controller 的实现,具体实现以 lib 的形式添加到 keil 工程中。Controller 两个版本分别是 Origin 版本,该版本是全功能版本,但是具体实现优化比较少,执行速度较慢,代码相对较大;另外一个版本是优化版本 (Spark 版本),该版本为精简和优化版本,速度更快功耗更低,但是目前主要实现 BLE 4.2+ 版本 feature,其他 5.0+feature 功能后续迭代升级。
- os:freertos 的相关代码
- samples: 基于 nimble 的相关 demo

2.1 modules

modules 在 NDK 中主要为外设以及 USB, 2.4G 等依赖的库文件

```
<home>/01_SDK/modules
.
hal
panchip
panplat
pan1070
bsp
cmsis
device
peripheral
radio
usb
```

2.2 controller

controller 中主要包含了两个版本 controller 依赖的头文件

```
<home>/01_SDK/nimble/controller
```

dummy.txt pan107x shrd_utils pan107x_spark include

2.3 host

host 中包含 nimble 的主体实现以及其他必须的组件,目前 nvs 数据库存储使用是的 kv_store 组件,主要用于存储 ble 的配对信息。当然开发者也可以用于自己的项目存储数据。

<home>/01_SDK/nimble/host

```
kv_store
   mtb_init.c
   mtb_kvstore.c
   mtb_kvstore.h
   mtd_kv_port.h
nimble
   CODING_STANDARDS.md
   LICENSE
    NOTICE
   README.md
   RELEASE_NOTES.md
    apps
    babblesim
    docs
    ext
    nimble
   porting
    repository.yml
    targets
    uncrustify.cfg
    version.yml
```

• kv_store 组件:

- 支持任何可以建模为块设备的存储,包括内部闪存或外部闪存(例如通过 QSPI)。

- 通过实例化库的多个实例来对存储进行分区。
- 设计为抗电源故障。
- 旨在促进存储的均匀磨损。
- nimble:

参考 nimble 专页介绍, nimble 基于 V1.5.0 版本移植实现。

2.4 lib

lib 中主要包含了两个版本 controller 主体实现的库文件:

<home>/01_SDK/nimble/lib

```
pan107x
ble.lib
pan107x_spark
ble_spark.lib
```

Controller 两个版本分别是 Origin 版本,该版本是全功能版本,但是具体实现优化比较少,执行速度 较慢,代码相对较大,所对应的库为 pan107x/ble.lib;

另外一个版本是优化版本,内部代号为 Spark,所对应的库为 pan107x_spark/ble_spark.lib。该版本 为精简和优化版本,速度更快功耗更低,但是目前主要实现 BLE 4.2+ 版本 feature,其他 5.0+feature 功能后续迭代升级。

2.5 OS

OS 目前只包含 freertos 的主体代码

2.6 samples

nimble 示例工程:

```
<home>/01_SDK/nimble/samples
```

```
samples
   bluetooth
    ble_cent_prph
   ...
   solutions
   ble_hid_selfie
   ...
```

1.4 Nimble 简介

NimBLE 是一个开源的蓝牙 5.1 协议栈(包括主机和控制器),其也是 Apache Mynewt 项目的一部分。 PAN1070 NDK 中使用的 NimBLE 版本为 v1.5.0。

特点:

- 支持 251 字节数据包长度。
- 支持 4 种角色并发工作: Broadcaster, Observer, Peripheral and Central。
- 支持 32 个连接并发工作。
- 支持 Legacy 和 SC (secure connections) SMP 配对和绑定。

- 支持扩展广播。
- 支持周期广播。
- 支持 Code phy 和 2M phy。
- 支持蓝牙 mesh[NDK 暂未测试对接]。

1.4.1 支持硬件

目前支持 PAN107x PAN101x 等系列芯片,同时 OS 使用 freertos。

1.4.2 概览

如果您在浏览源代码树,并且想要查看一些主要的功能块,这里有一些指引:

- nimble/controller: nrf 的部分 controller 实现, Pan10xx 封装于相关 lib 中。
- nimble/drivers: 射频相关收发 (Nordic nRF51 and nRF52), Pan10xx 封装于相关 lib 中。
- nimble/host: 包含主机子系统的代码。这包括 L2CAP 和 ATT 等协议,支持 HCI 命令和事件,通用访问配置文件 (GAP),通用属性配置文件 (GATT)和安全管理器 (SM)。
- nimble/host/mesh: 包含蓝牙 Mesh 子系统的代码。
- nimble/transport: 包含支持主机和控制器之间的传输协议的代码。这包括 UART、emSPI 和 RAM (在主机和控制器在同一 CPU 上运行时使用的组合构建)。
- porting: 包含支持的操作系统的 NimBLE 移植层 (NPL) 的实现。
- ext: 包含 NimBLE 使用的外部库。如果操作系统没有提供这些库,则会使用它们。

1.4.3 应用示例

还有一些示例应用程序,展示了如何使用 Apache Mynewt NimBLE 协议栈。如下:

- ble_central: 蓝牙主机示例, 主要用于演示主机连接从机 ANS 报警通知服务. 该示例可以直接和 bleprph_enc 完成对测。
- bleprph_hr: 蓝牙从机示例, 主要演示从机心跳服务.
- bleprph_enc: 蓝牙从机加密示例, 主要演示从机特定特性读写时会进行加密配对服务. 可以和 ble_central 完成连接对测。但是 ble_central 并没有访问加密特性, 所以不会触发加密配对流 程。

1.4.4 API 接口

如果想在线了解 API 可以参考官方提供的 API 接口指南 NimBLE Host 去了解相关接口功能。

Chapter 2

硬件资料

文档列表:

2.1 PAN10xx EVB 介绍

2.1.1 1 概述

本文为 PAN10xx Evaluation Board (EVB) 开发板介绍,包括相关板级硬件模块、各模块在 EVB 板上的位置、以及对应电路原理图,旨在帮助开发者快速了解 PAN10xx EVB 开发板。

PAN10xx EVB 开发板由核心板、底板两大部分组成,其中:

- 核心板提供了 PAN10xx SoC 的最小系统,主要包含有 PAN10xx SoC 芯片、32MHz 高速晶振、32768Hz 低速晶振、复位按钮、板载天线以及一些必要的无源器件。
- 底板上提供了诸多 PAN10xx SoC 支持的外设模块,其中包含:
 - 电源管理系统、USB_Type-C 转串口模块、RGB 三色灯、三轴加速度传感器、外部 SPI FLASH、无源蜂鸣器、独立按键、可调电阻、红外模块、独立 LED 灯等等;
- 对外接口有 USB-Type-C 接口、USB_Type-C 转串口接口、鼠标接口,矩阵按键接口、OLED 显示屏接口、全 GPIO 测试接口等,如下图所示

2.1.2 2 开发板硬件资源

2.1 PAN10xx 最小系统

PAN10xx 最小系统由核心板和转接板组成。最小系统以模块形式嵌入开发板底板中,可分离式设计方便 单独调试及应用于其它场景,如下图所示:

核心板搭载 PAN10xx 主控芯片、外部 32M 晶振、板载天线等,通过标准间距 2.54mm 双排针引出了所 有 GPIO, PAN10xx 核心板原理图如下所示:

2.2 电源模块

PAN10xx EVB 开发板可选择使用以下两种供电方式之一:

- 5V 的 USB 供电;
- 3V 的 CR2032 纽扣电池供电;

EVB 开发板电源模块原理图如下:

EVB 开发板左侧有两个 USB-Type-C 接口 U5 与 U7,它们的电源引脚均与 EVB 的 5V 电源网络连在 一起;除此之外,二者还有以下区别:

图 1: PAN10xx EVB V1.0 3D 图

图 2: PAN10xx EVB V1.0 实物图

图 3: PAN1010S9FA 最小系统板三维图顶部

图 4: PAN1070UA1A 最小系统板三维图顶部

图 5: PAN1010S9FA 最小系统板三维图底部

图 6: PAN1070UA1A 最小系统板三维图底部

图 7: SSOP24 封装核心板原理图

图 8: QFN32 封装核心板原理图

图 9: 电源模块原理图

- U7 为普通 USB 接口,使用跳线帽将 EVB 底板的 USBDM/USBDP 分别与 SoC 的对应引脚相连,即 可使用 PAN10xx SOC 的 USB 模块;
- U5 为 USB 转 UART 模块的 USB 端接口,使用跳线帽将 EVB 底板的 TXO/RXO 分别与 SoC 对应 的引脚相连,即可通过 USB 转串口模块,实现 PAN10xx SOC 的 UART0 与 PC 进行通信;

注: 在实际使用过程中,选用任意一个 USB 口供电即可,但需注意,板载电源切换开关 应拨动至 LDO 档位。

一种典型的供电方法如下图所示:

图 10: 供电方式示意图

其中:

- 1. 拨动开关 SW2 左拨到 LDO 档位;
- 2. 使用跳线帽短接图右侧排针,作用是将电源分别连接至 VCC (即核心板系统电源)、VDD (即开 发板外设供电),电压分别有 3.3V、2.5V、1.8V 可选。

电源网络的三个 LDO 模块,分别输出 3.3V、2.5V、1.8V,故 VCC(核心板系统电源)、VDD(开发板外设供电)可以各自分别选择所需要的电压。

另外,若希望开发板由左下角纽扣电池供电,则拨动开关 SW2 往右拨到 BAT 档位即可。

2.3 SWD 调试接口

开发板提供了单排针接口用于连接 J-LINK 实现 SWD 调试和程序下载功能,该排针接口位于整板左上方。

一种典型的使用方法如下图所示:

- 1. JLINK 下载器插到 SWD 接口 J4;
- 2. 供电方式参考上文。

2.4 USB 转串口模块

PAN10xx SoC 的 P16、P17 引脚可通过软件配置成 UART 串口功能, 然后通过 CH343 模块转为 USB_Type-C 接口。

USB 转 UART 模块使用 U5 USB_Type-C 接口,并且使用跳线帽短接排针对应的引脚,如下图所示 (流控还需用跳线帽将 CTSO、RTSO 连接到 SOC):

2.5 RGB 灯

开发板搭载单颗 RGB 灯,可由芯片的三个 IO 通过晶体管控制,实现亮灭或渐变等效果。 为使用此模块功能,需要将跳线帽短接排针上对应的三对引脚,如下图所示:

2.6 USB 模块

开发板提供一个 USB_Type-C 接口,原理图如下: 为使用此模块功能,需要将跳线帽短接排针上对应的引脚,如下图所示:

2.7 运动传感器

开发板搭载了三轴加速度计传感器 SC7A20, 提供了 IIC 接口与主控芯片进行通信, IIC 通信地址为: 0X18, 原理图如下:

为使用此模块功能,需要将跳线帽短接排针上对应的引脚,如下图所示:

2.8 OLED 显示屏

开发板搭载了常见的 0.96 寸、七针接口、128*64 分辨率的 OLED 显示屏模块接口, OLED 模块使用 SSD1306 显示驱动芯片进行控制,具备内部升压,对外默认提供三线 SPI 接口与主控芯片进行通信,其 原理图如下:

使用此模块功能之前,需要使用跳线帽短接 OLED 功能对应的排针,如下图所示:

注: OLED 显示屏模块与板载 SPI FLASH 芯片共用主控芯片的 SPI 接口。

2.9 外部 SPI FLASH

开发板搭载了具备 1MB 存储空间的外部 FLASH 芯片 GD25WQ80,该芯片与板载显示屏模块共用主控 芯片的 SPI 接口,其原理图如下:

为使用此模块功能,需要将跳线帽短接排针上对应的引脚,如下图所示:

2.10 蜂鸣器

开发板搭载了贴片无源蜂鸣器电路用于声音提示、报警等功能,可由 PAN10xx SoC 通过 PWM 输出 2KHz~3KHz 频率的方波控制发声,其原理图如下:

为使用此模块功能,需要将跳线帽短接排针上对应的引脚,如下图所示:

图 11: JLink 连线

图 12: USB 转 UART 模块原理图

2.11 可调电阻

开发板搭载了一个最大阻值为 10K 的可调电阻与 0 欧姆精密电阻串联接入电源电路,在 LDO 提供 VDD 电源的系统中,可在 ADC 采样点产生 0V~ VDDV 的可调电压,用于测试 PAN10xx SoC 的 ADC (模数转换器)采样功能,其原理图如下:

为使用此模块功能,需要将跳线帽短接排针上对应的引脚,如下图所示:

2.12 **轻触按键**

开发板底板配备了 4 个按键: 2 个普通 GPIO 按键、1 个低功耗唤醒按键和 1 个复位按键。其中:

- 按键 K1 可通过跳线帽连接至 PAN10xx SoC 的 RST 引脚,用于控制芯片复位;
- 按键 K2 可通过跳线帽连接至 PAN10xx SoC 的 P02 引脚,在 PAN10xx SoC 处于待机 (Standby) 模式下时, P56 引脚可被配置为低功耗唤醒引脚。
- 按键 K3、K4 连接至 PAN10xx SoC 的 GPIO 口 P06、P12, 当做普通按键使用;

按键,原理图如下:

为正常使用所有按键,需要将 GPIO 内部上拉电阻开关打开, PCBA 如下图所示:

2.13 独立 LED 灯

开发板底板配备了 4 独立 LED 灯,原理图如下: 为使用此模块功能,需要将跳线帽短接排针上对应的引脚,如下图所示:

2.14 **红外模块**

开发板搭载了一个红外收发模块,包括一个发射电路和一个接收电路,其原理图如下: 为使用此模块功能,需要将跳线帽短接排针上对应的引脚,如下图所示(可选择只短接需要使用的 LED 灯,不需要全部短接):

图 13: USB 转 UART 模块实物接线图

图 14: RGB 灯原理图

图 15: RGB 灯实物图

图 16: USB 模块外围电路原理图

图 17: USB 模块外围电路实物图

图 18: G-Sensor 模块原理图

图 19: G-Sensor 模块实物接线图

图 20: OLED 模块原理图

图 21: OLED 模块接线实物图

图 22: 外部 SPI Flash 模块原理图

图 23: 外部 SPI Flash 模块实物接线图

2.2 PAN10xx 硬件参考设计

2.2.1 1 概述

本文档主要介绍 PAN10xx 系列芯片方案的硬件原理图设计、PCB 设计建议、天线设计。本文档提供 PAN1070UA1A 芯片的硬件设计方法。

2.2.2 2 原理图设计建议

2.1 PAN1010S9FA 硬件参考设计原理图

2.2 PAN1070UA1A 硬件参考设计原理图

如上图电路系统由电源去耦电容、DC-DC 降压、晶振电路、天线匹配网络组成。

2.3 电源

- VBAT 为芯片电源脚,要求供电能力不小于 60mA,供电范围为 1.8V-3.6V。
- VBAT、VCC_RF、VOUT_BK 电源相关引脚需要至少预留 1 个电容,预留一大一小 2 个电容更 佳。电容推荐为 4.7uF 和 100nF。
- 电容靠近芯片引脚摆放,电容焊盘和芯片焊盘之间最大距离不超过 5mm。请遵循指导要求,否则 易引起 DC-DC 带不起 RF 以及 EVM 异常。

图 25: 蜂鸣器模块实物接线图

图 26: 可调电阻原理图

图 27: ADC 模块示例接线图

图 28: 按键原理图

图 29: 按键图

P05

C12

GND

100nF

图 30: LED 灯模块原理图

- 2.3.1 DC-DC DC-DC 芯片外围电路
 - 1. PAN10x 系列芯片 DC-DC 外围电路组成为: 2.2 H 电感、100nF 电容、4.7 F 电容。
 - L1 推荐型号: PIM252010-2R2MTS00。选择功率电感, 2.2 H,最小峰值电流为 150mA, DCR 不 超过 80mΩ,未满足要求在 DC-DC 模式可能会造成 RF 功能异常。
 - 3. DCR 过大会影响 BUCK 效率,能量会转化成热量损耗掉,DC-DC 输出的驱动电流是有限的,效率越低,能够供给到芯片的有效能量就越少。
 - DC-DC 的两种工作模式:
 - 1. 开启 DC-DC 模式可以降低系统功耗。
 - 2. 开启 LDO (Bypass) 模式后芯片内部将 VBAT 连接到 VSW1,这时 VSW1 处的 2.2uH 电感作用 为一段导体,可以用 0Ω 电阻替换。
 - 3. DC-DC、LDO 两种模式不能同时开启。
 - 4. 在不考虑功耗的前提下,可将 VCC_RF 直接连接到 VBAT,此时应将电源模式设置为 LDO 模式。
 - DC-DC 相关引脚说明:
 - 1. VBAT 为 DC-DC 的供电引脚。
 - 2. VSW1 为 DC-DC 的功率开关 (P-MOS) 漏极输出引脚, 功率电感应靠近该引脚放置。
 - 3. VOUT_BK 为 DC-DC 的反馈引脚,电容应靠近该引脚放置。
 - 4. VSS_BK 为 DC-DC 电源的 GND 引脚。

2.3.2 DVDD 电容 芯片 DVDD 管脚推荐放置 100nF 电容。电容最大不超过 1uF, 否则会影响芯片正 常启动, 影响功耗, 电容应靠近该引脚放置。

注意:为避免电路异常,该电容容值请不要随意更改!

2.3.3 VDD_FLASH 电容 芯片 VDD_FLASH 管脚推荐放置 1uF 电容, 电容应靠近该引脚放置。

注意:为避免电路异常,该电容容值请不要随意更改!

2.3.4 VCC_RF VCC_RF 外部需要接一级 RC 滤波器并尽量靠近该引脚。R3 一般为 0 Ω 、C6 为 4.7uF。请遵循先 R 后 C, 电容摆放位置距离芯片引脚不超过 5mm。

图 31: LED 灯模块实物接线图

图 32: 红外模块原理图

2.4 晶振

2.4.1 **晶振** 32Mhz

• 上图振荡器由晶振、反馈电阻 R1、负载电容 CL、放大器构成。可以通过晶体所需负载电容 CL 来 调整晶体振荡器频率,负载电容 CL1、CL2 取值为 3.9pF。推荐型号为: E1SB32E000016E 32MHz 9pF ±10ppm 。该晶体温漂较好。

2.4.2 **晶振** 32.768Khz

 低速晶振电路支持外部 32.768KHz 无源晶振。低速晶振推荐用户选择 ESR<80KΩ 的晶振,负载 电容 C12、C15 取值为 10pF。推荐型号为:Q13FC1350000200 32KHz 12.5pF ±20ppm。该晶体 温漂较好。

2.5 复位电路

复位引脚可以悬空,或增加外部按键。在外部按键应用中必须有电容,参数为100nF。加电容的作用是 在系统受到强干扰时,稳定复位脚的电平状态。

注意:该引脚内部有一个 50KΩ 左右的上拉电阻,低电平会使复位生效,为避免电路异常, 该电容容值请不要随意更改!

2.6 静电防护

2.6.1 IO 端静电防护 使用的 IO 要预留串联电阻和 ESD 静电防护元件焊盘位置,便于过认证前的调试 整改。串电阻的作用主要是减少 IO 信号的反射、降低外部毛刺信号干扰以及削弱静电对 IO 的影响。频 繁与外部进行数据交换的 IO 例如使用 USB 功能脚等,必须使用 TVS 管进行保护。建议使用的 TVS 管类型如单向的 ESD5Z3V3 或双向的 CESD923NC5VB,靠近外设接口位置摆放,ESD 静电防护元件 附近建议保留完整、连续的地,周围打尽量多过孔,有利电荷泄放。

2.6.2 **电源端静电防护** 电源输入端 VBAT 建议加上静电防护元件,若有静电进入可快速将电荷泄放到 地,尽可能避免损坏芯片。ESD **静电防护元件靠近电源输入端接口摆放**。可选择 ESD5Z3V3。

图 33: 红外模块实物接线图

图 34: PAN1010S9FA 最小系统参考设计原理图

图 35: PAN1070UA1A 最小系统参考设计原理图

图 36: 32MHz 晶振外围电路示意图

图 37: 32KHz 晶振外围电路原理图

图 38: 复位电路

2.6.3 天线端静电防护 无论是板载天线还是其他天线,本质上都是一段长导体,必然有概率吸引到静电 电荷,为预防静电打坏芯片 RF,天线端建议加上静电防护元件,必须使用低容值 (小于 0.5pF)的 TVS 元器件,尽可能不影响 RF 阻抗,如 BTRD04A035。ESD 静电防护元件靠近芯片摆放,若 RF 阻抗受 到影响还可通过 匹配调整。在天线的位置放置一个 ESD 管。

推荐使用有馈地点的天线,板载天线推荐 PIFA。

图 39: 天线端静电防护示意图

2.7 IO 功能分配

靠近天线端的 IO (P22、P23) 尽量不要频繁的翻转,比如用作 PWM 功能。这会使射频底噪变差,影响灵敏度。

2.2.3 3 PCB 设计建议

3.1 制版工艺

• 本 Guide 主要针对二层板并且单面贴设计,叠层如下图所示。PCB 具体厚度根据实际情况和阻抗 要求适当调整。

	Layer Name	Туре	Material	Thickness (mil)	Dielectric Material	Dielectric Constant
	Top Overlay	Overlay				
	Top Solder	Solder Mask/Coverlay	Surface Material	0.4	Solder Resist	3.5
1	Top Layer	Signal	Copper	1.8		
	Dielectric1	Dielectric	None	59.4	FR-4	4.6
2	Bottom Layer	Signal	Copper	1.8		
	Bottom Solder	Solder Mask/Coverlay	Surface Material	0.4	Solder Resist	3.5
	Bottom Overlay	Overlay				

图 40: 制版工艺说明

* 线宽推荐如下:

板材属性	参数
PCB 板材	FR4
PCB 板厚	1.6mm
50 欧姆 RF 线宽	20mil
接地铺铜与 RF 走线间距	5mil

3.2 电源部分注意事项

3.2.1 电源去耦电容布局

• VBAT, VCC_RF, VOUT_BK, DVDD 管脚就近放置电容, 走线尽量短粗, 如下图绿色框图部分。

图 41: PAN1010S9FA 电源去耦电容布局

3.2.2 DC-DC PCB 布局参考设计

- VSW1 管脚与电感 L1 距离尽量的短, 且附铜面积尽量大。
- L1 与 C3&C4 之间的走线尽量短, 且附铜面积尽量大。
- C1&C2 靠近 VBAT_BK 管脚位置摆放, 走线尽量短

图 42: PAN1070UA1A 电源去耦电容布局

图 43: DC-DC 外围电路

- VOUT 与 VCC_RF 之间增加小电阻靠近 C5&C6 摆放
- 电感 L1 尽量远离晶振 XTH
- 电感四周用 GND 隔离
- DCDC 的地不能与 XTH 共用, DCDC 的地通过 0 Ω 电阻和其他地连接。DCDC 的地不能直连到 EPAD。

总体原则为 DCDC 电流回路路径尽可能短; DCDC 地属于干扰源尽量隔离,避免干扰晶振。

图 44: PAN1010S9FA DC-DC Layout 示意图

3.3 射频走线注意事项

- 晶振尽量靠近芯片引脚摆放。
- 射频匹配链路按照 50Ω 走线,可以参考 TOP 和 BOTTOM 层的 GND 平面, RF 走线尽可能短, RF 线与焊盘宽度一致,天线的 型匹配并联元件焊盘和走线重合为佳。
- RF 线有完整的参考地,从 IC 端出来就进行包地处理,两边打 GND 过孔,底层地平面尽量宽,如 标签 1 所指信号走线。
- IPEX-1 代天线端子信号引脚挖空,周围包地,尽量减小寄生电容导致阻抗突变,如标签 3。
- 芯片底部多打过孔,QFN 封装则打在 E-PAD 上,如标签 2。
- 晶振应远离天线, TOP 层挖空, 周围包地, 降低对电源和 RF 的干扰, 需要挖空的部分如标签 3。
- 天线辐射区域不要摆放金属器件,净空区挖空处理。

射频链路走线参考如下:

图 45: PAN1070UA1A DC-DC Layout 示意图

图 46: PAN1010S9FA 射频链路走线示意图

图 47: PAN1070UA1A 射频链路走线示意图

- 天线匹配链路底层不要走线,保证地回路到芯片最短。天线匹配链路的地和芯片 EPAD 是一块完整连续的地。如标签"射频地"。
- 芯片底层不要走线。

射频地线走线如下:

3.4 **板载天线**

PCB Layout 参考中 MIFA 天线尺寸如图所示。

天线设计尺寸参考

3.5 RF 网络匹配调整

- 如果客户的样板有足够的空间和成本预算来放置匹配的网络组件以及拥有天线调谐能力,我们还 建议使用匹配网络。
- 1. 要进行 RF 匹配调试,建议在芯片引脚附近、靠近天线辐射端都各加入一个 形匹配,并且在两个 匹配之间串上一个 0Ω 电阻便于调试。如下图 RF 网络匹配原理示意图。
- 2. 建议先调远端,先进行天线端匹配调试。断开两个 形匹配之间的串联电阻(如 RF 网络匹配原理 示意图中的标记 2),使用如矢量网络分析仪可观测天线阻抗、S11 参数的仪器接入到天线端 形 匹配网络(如 RF 网络匹配原理示意图中的标记 3 位置),调试天线端阻抗和 S11 驻波。
- 3. 之后进行芯片输出功率调试,断开两个 形匹配之间的串联电阻,使用如矢量网络分析仪等可观测 天线阻抗、S11 参数的仪器接入到芯片端的 形匹配网络(如 RF 网络匹配原理示意图中的标记 1 位置),调整芯片输出阻抗以及功率。
- 4. 若没有仪器观测阻抗参数,亦可断开两个 形匹配之间的串联电阻,将频谱仪或其他可以检测 RF 输出功率的仪器接入到芯片端的 形匹配网络,通过检测 2402、2440、2480 三个频点的功率值, 来调整芯片的输出功率。
- 5. 最后还需要测试芯片灵敏度情况,因为发射机和接收机内部匹配不完全相等,所以当发射功率调好以后,最后需要确认接收灵敏度情况,如果发射功率调整好后发生接收机灵敏度下降,联系我司工程师修改内部匹配。

注意:量产前一定要进行距离测试!

2.2.4 4 BOM

PAN1010S9FA 最小系统 BOM 参考下表:

图 48: PAN1010S9FA 射频地线走线示意图

图 49: PAN1070UA1A 射频地线走线示意图

Transmission line 50 ohm to matching network Orange: Top Layer Light Blue: Bottom Layer All dimensions are in mils

图 50: 天线设计尺寸参考示意图

Leg	

PCB Thickness	Antenna L_Tip / L_leg
16 mils	L_tip= 353 Mils
31 mils	L_tip= 165 Mils
47 mils	L_tip= 125 Mils
62 mils	L_leg= 115 Mils

图 52: RF 网络匹配原理示意图

品种	参数	型号	品牌	立 创	位号	封装	数
				编号			量
贴片陶	$4.7\mathrm{uF}$	0402X475M6F	3NI东风华高新科	C1681	72C8, C14	0402_C	2
瓷电容			技股份有限公司				
贴片陶	1uF	0402X105K6R	3NT东风华高新科	C1423'	76C16	0402_C	1
瓷电容			技股份有限公司				
贴片陶	100 nF	0402B104K16	MT东风华高新科	C4185	1 C4, C5, C7, C	C99,40023_C	5
瓷电容			技股份有限公司				
贴片陶	10PF	0402CG100J5	00N东风华高新科	C1545	C12,C15	0402_C	2
瓷电容			技股份有限公司				
贴片陶	3.9PF	0402CG3R9B	001xx风华高新科	C3130	81C1,C10,C1	1 0402_C	3
瓷电容			技股份有限公司				
贴片按	4P-4.2mm	K2-1808SN-	韩荣电子有限公	C9258	9 K1	SW-	1
键	≥ 3.25 mm	A4SW-01	司			SMD(4.2x3.25x)	x2.5)
贴片功	2.2uH	PIM252010-	广东风华高新科	C2986	79121	SMD-2520-	1
率电感		2R2MTS00	技股份有限公司			1.0	
贴片电	$0\Omega \ 1\%$	RC-	广东风华高新科	C1402	25R1, R2, R3, I	R50402_R	4
阻		02000FT	技股份有限公司				
贴片 4	32MHz	E1SB32E0000	16鸿星科技	C2757	57Y1	SMD-	1
脚晶振	10 ppm 9 pF					3225_4P	
贴片 2	32.768KHz	X321532768K	GIP20机扬兴科技有	C6201	55Y2	SMD-	1
脚晶振	$12.5 \mathrm{pF}$		限公司			3215_2P	
						FC - 135	
贴片 IC	PAN1010S9F	A	上海磐启微电子	\	U1		
			有限公司				

PAN1070UA1A 最小系统 BOM 参考下表:

品种	参数	型号	品牌	立创	位号	封装	数
				编号			量
贴片陶	$4.7\mathrm{uF}$	0402X475M6F	3NI东风华高新科	C1681'	72C6, C8,	0402_C	3
瓷电容			技股份有限公司		C14		
贴片陶	1uF	0402X105K6R	3NT东风华高新科	C1423'	76C16	0402_C	1
瓷电容			技股份有限公司				
贴片陶	100 nF	0402B104K16	NT东风华高新科	C4185	1 C4,C5,C7,0	C9 ,402 _C	5
瓷电容			技股份有限公司				
贴片陶	10PF	0402CG100J5	00 N 东风华高新科	C1545	C12,C15	0402_C	2
瓷电容			技股份有限公司				
贴片陶	3.9PF	0402CG3R9B	00N 年风华高新科	C31308	81C1,C10,C1	1 0402_C	3
瓷电容			技股份有限公司				
贴片按	4P-4.2mm	K2-1808SN-	韩荣电子有限公	C92589	9 K1	SW-	1
键	x 3.25 mm	A4SW-01	司			SMD(4.2x3.25x)	x2.5)
贴片功	2.2uH	PIM252010-	广东风华高新科	C2986'	79121	SMD-2520-	1
率电感		2R2MTS00	技股份有限公司			1.0	
贴片电	$0\Omega \ 1\%$	RC-	广东风华高新科	C1402	25R1,R3	0402_R	2
阻		02000FT	技股份有限公司				
贴片 4	32MHz	E1SB32E0000	16鸿星科技	C2757	57 Y 1	SMD-	1
脚晶振	$10 \mathrm{ppm} \ 9 \mathrm{pF}$					3225_4P	
贴片 2	32.768KHz	X321532768K	GIP2期扬兴科技有	C6201	55Y2	SMD-	1
脚晶振	$12.5 \mathrm{pF}$		限公司			3215_2P	
						FC - 135	
贴片 IC	PAN1070UA	1.4	上海磐启微电子	\	U1	QFN32	1
			有限公司				

HDK 内容:

硬件开发资料(HDK)位于: <PAN107X-DK>\02_HDK, 其包含如下内容:

02_HDK 子目录	包含内容
PAN107x Development	PAN107x EVB 底板硬件设计资料(原理图、PCB 文件等)和生产资料
Kit Base V1.1	(BOM、gerber、坐标等文件)
PAN1070UA1A	PAN107x EVB QFN32 核心板硬件设计资料(原理图、PCB 文件等)和
	生产资料 (BOM、gerber、坐标等文件)
PAN1010S9FA	PAN101x EVB SSOP24 核心板硬件设计资料(原理图、PCB 文件等)和
	生产资料(BOM、gerber、坐标等文件)

Chapter 3

演示例程

3.1 蓝牙例程

3.1.1 BLE Central and Peripheral

1 功能概述

此项目演示蓝牙主从一体功能,其实就是整合了 ble_central 以及 ble_peripheral_hr 功能。

• 作为主机:可以直接扫描和连接 ble_peripheral_enc 示例,可以直接下载 ble_peripheral_enc 到另外一块 EVB 板上。

• 作为从机:其实就是一个 ble_peripheral_hr 例程,可以使用手机 nrf_connect app 与其相连。 作为主机和从机的功能可以同时使用。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)

3 编译和烧录

例程位置: <home>\nimble\samples\bluetooth\ble_cent_prph\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

- 1. 烧录完成后,如果空中有 ble_peripheral_enc 存在,则会主动连接上。同时使用 nrf connect 扫 描发发现 cent_prph 设备,连接上后会出现 heartrate service 服务。
 - 主机 log 如下:

[15:32:17.967]Try to load HW calibration data.. DONE.
- Chip Type : 0x80
- Chip CP Version : None
- Chip FT Version : 8
- Chip MAC Address : D0000C0CBBF5
- Chip Flash UID : 32313334320EAC834330FFFFFFFFFF
- Chip Flash Size : 1024 KB

```
LL Spark Controller Version:b0e99c4
[15:32:18.011]ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
blehr_advertise
[15:32:19.216]Connection established handle=0 our_ota_addr_type=0 our_ota_
→addr=06:05:04:03:06:06 our_id_addr_type=0 our_id_addr=06:05:04:03:06:06 peer_ota_addr_
→type=0 peer_ota_addr=06:05:04:03:02:01 peer_id_addr_type=0 peer_id_
\rightarrowauthenticated=0 bonded=0
/*作为主机连接 slave 设备*/
[15:32:21.923]Service discovery complete; status=0 conn_handle=0
[15:32:22.021]Read complete; status=0 conn_handle=0 attr_handle=12 value=0x00
Write complete; status=270 conn_handle=0 attr_handle=22
[15:32:22.073]Subscribe complete; status=0 conn_handle=0 attr_handle=20
[15:32:27.516] connection established; status=0
/*作为从机被手机主机连接*/
[15:32:30.908]subscribe event; cur_notify=1
value handle; val_handle=3
```

• 从机 ble_peripheral_enclog 如下:

```
[15:32:15.447] Try to load HW calibration data.. DONE.
                   : 0x80
- Chip Type
- Chip CP Version : None

Chip FT Version : 7
Chip MAC Address : D0000C06FB6E

    Chip Flash UID : 31373237304A23094330FFFFFFFFFF
    Chip Flash Size : 1024 KB

LL Spark Controller Version:b0e99c4
[15:32:15.491] ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
registered service 0x1800 with handle=1
registering characteristic 0x2a00 with def_handle=2 val_handle=3
registering characteristic 0x2a01 with def_handle=4 val_handle=5
registered service 0x1801 with handle=6
registering characteristic 0x2a05 with def_handle=7 val_handle=8
registered service 0x1811 with handle=10
registering characteristic 0x2a47 with def_handle=11 val_handle=12
registering characteristic 0x2a46 with def_handle=13 val_handle=14
registering characteristic 0x2a48 with def_handle=16 val_handle=17
registering characteristic 0x2a45 with def_handle=18 val_handle=19
registering characteristic 0x2a44 with def_handle=21 val_handle=22
registered service 59462f12-9543-9999-12c8-58b459a2712d with handle=23
registering characteristic 33333333-2222-2222-1111-111100000000 with def_handle=24 val_
\rightarrowhandle=25
registering descriptor 34343434-2323-2323-1212-121201010101 with handle=27
Device Address: 01 02 03 04 05 06
```

[15:32:19.216] connection established; status=0 handle=1 our_ota_addr_type=0 our_ota_addr=01_⊔
→02 03 04 05 06

- 1. 具体 app 功能实现可以参考 BLE Central 和 BLE Peripheral ENC 的文档。
- 2. 多连接相关:
 - 对于 controller 层,: 指示 origin controller 多连接资源的宏 CONFIG_BT_CTLR_MAX_NUM_OF_STATES; 指示 spark controller 多连接资源的宏 CONFIG_BT_CTLR_MAX_MST_CONN和 CONFIG_BT_CTLR_MAX_SLV_CONN.
 - 对于 host 层: MYNEWT_VAL_BLE_MAX_CONNECTIONS 会影响 host 层的连接资源数量。

5 RAM/Flash 资源使用情况

PAN107x:

RAM Size:37.82 k Flash Size: 126.00k

3.1.2 BLE Central

1 功能概述

此项目演示蓝牙主机功能,通过扫描其他 BLE 设备,并通过特定的服务 UUID 进行识别,此处是 ANS 服务 0x1811。作为对端,可以直接使用 bleprph_enc 进行编译下载另外一个 EVB 上和主机 sample 完 成测试。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)

3 编译和烧录

例程位置: <home>\nimble\samples\bluetooth\ble_central\keil_107x

使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 烧录完成后,设备会一直打印收到的广播信息,连接上会显示 Connection established,服务发现完成后输出 Service discovery complete。

[10:48:46.565]LL Controller Version:bd5923c

[10:48:46.603]ble_store_config_num_our_secs:0 ble_store_config_num_peer_secs:0

```
(续上页)
```

```
ble_store_config_num_cccds:0
  [10:48:46.673]flags=0x06
      uuids16(complete)=0xeOff
      mfg_data=0x53:0x50:0x04:0x11:0x23:0x00:0x00:0x00:0x60:0x13
      flags=0x06
      name(complete)=QHM-C109
      mfg_
   →data=0x06:0x00:0x01:0x09:0x20:0x02:0x3f:0x6b:0x8e:0x3d:0x22:0x86:0x72:0xf0:0x67:0x3e:0x52:0x1f:0x94:0xe1
      flags=0x1a
      tx_pwr_lvl=12
      mfg_data=0x4c:0x00:0x10:0x05:0x1c:0x18:0x03:0x6b:0xee
      flags=0x06
      uuids16(complete)=0xe0ff
      mfg_data=0x53:0x50:0x04:0x11:0x23:0x00:0x00:0x00:0x60:0x13
      flags=0x06
      name(complete)=QHM-C109
      flags=0x06
      uuids16(complete)=0xe0ff
      mfg_data=0x53:0x50:0x04:0x11:0x23:0x00:0x00:0x00:0x60:0x13
      flags=0x06
      name(complete)=QHM-C109
   [10:48:48.154]flags=0x06
      name(complete)=QHM-C109
      flags=0x06
      uuids16(complete)=0xeOff
      mfg_data=0x53:0x50:0x04:0x11:0x23:0x00:0x00:0x00:0x60:0x13
      flags=0x06
      uuids16(complete)=0x1811
      name(complete)=nimble-bleprph
      tx_pwr_lvl=0
  [10:48:48.242]Connection established handle=0 our_ota_addr_type=0 our_ota_
   →addr=06:05:04:03:06:06 our_id_addr_type=0 our_id_addr=06:05:04:03:06:06 peer_ota_addr_

whype=0 peer_ota_addr=06:05:04:03:02:01 peer_id_addr_type=0 peer_id_

   →addr=06:05:04:03:02:01 conn_itvl=32 conn_latency=0 supervision_timeout=256 encrypted=0
   \rightarrowauthenticated=0 bonded=0
  [10:48:50.397]Service discovery complete; status=0 conn_handle=0
  [10:48:50.515]Read complete; status=0 conn_handle=0 attr_handle=12 value=0x00
  Write complete; status=270 conn_handle=0 attr_handle=22
  Subscribe complete; status=0 conn_handle=0 attr_handle=20
2. 断链时会有如下输出。
  disconnect; reason=0x08
```

```
handle=0 our_ota_addr_type=0 our_ota_addr=06:05:04:03:06:06 our_id_addr_type=0 our_id_

addr=06:05:04:03:06:06 peer_ota_addr_type=0 peer_ota_addr=06:05:04:03:02:01 peer_id_

addr_type=0 peer_id_addr=06:05:04:03:02:01 conn_itvl=32 conn_latency=0 supervision_

timeout=256 encrypted=0 authenticated=0 bonded=0
```

3. 广播显示和连接过滤调整

如果广播打印太过频繁,影响查看相关 log 可以手动关掉:

```
blecent_gap_event(struct ble_gap_event *event, void *arg)
{
    struct ble_gap_conn_desc desc;
    struct ble_hs_adv_fields fields;
```

连接时的过滤条件 blecent_connect_if_interesting:

```
/**
* Connects to the sender of the specified advertisement of it looks
 * interesting. A device is "interesting" if it advertises connectability and
 * support for the Alert Notification service.
*/
static void
blecent_connect_if_interesting(const struct ble_gap_disc_desc *disc)
{
   uint8_t own_addr_type;
   int rc;
    /*Filter adv by rssi*/
   if (disc->rssi < -70) /* 此处可以调整 RSSI 进行过滤 */
    ſ
       return;
   }
    /* Don't do anything if we don't care about this advertiser. */
   if (!blecent_should_connect(disc)) {
       return;
   }
   /* Scanning must be stopped before a connection can be initiated. */
   rc = ble_gap_disc_cancel();
   if (rc != 0) {
       printf("Failed to cancel scan; rc=%d\n", rc);
       return;
   }
   /* Figure out address to use for connect (no privacy for now) */
   rc = ble_hs_id_infer_auto(0, &own_addr_type);
   if (rc != 0) {
       printf("error determining address type; rc=%d\n", rc);
       return;
   }
    /* Try to connect the the advertiser. Allow 30 seconds (30000 ms) for
    * timeout.
    */
   rc = ble_gap_connect(own_addr_type, &disc->addr, 30000, NULL,
                        blecent_gap_event, NULL);
```

5 RAM/Flash 资源使用情况

PAN107x:

}

RAM Size:36.38 k Flash Size: 123.37k

3.1.3 BLE MULTI ROLE

1 功能概述

此项目演示蓝牙多角色功能,可以支持多主多从,可以通过串口控制设备执行广播、扫描。

- 作为主机:可以直接扫描和连接 bleprph_enc 示例,可以直接下载 bleprph_enc 到另外一块 EVB 板上。
- 作为从机:其实就是一个 bleprph_hr 例程,可以使用手机 nrf_connect app 与其相连。

作为主机和从机的功能可以同时使用。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)

3编译和烧录

例程位置: <home>\nimble\samples\bluetooth\ble_multi_role\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

命令串口端口:

UART PORT	DESCRIPTION
P10	UART1_TX
P24	UART1_RX

BaudRate: 921600

相关的串口命令如下表格所示:

TEST CMD	DESCRIPTION
ADV_START\r\n	开启广播
ADV_STOP\r\n	停止广播
$SCAN_START\r\n$	开启扫描
$SCAN_STOP\r\n$	停止扫描

1. 烧录完成后,串口输出的 log 如下:

```
Try to load HW calibration data.. DONE.
- Chip Info
               : 0x1
- Chip CP Version : 255
- Chip FT Version : 2
- Chip MAC Address : D000000017D
- Chip UID
           : FD0311230F37560365
- Chip Flash UID : 425031563233391711230F3756036578
- Chip Flash Size : 512 KB
LL Spark Controller Version:d7c4bfa
APP version: 0.144.38920
ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
blehr_advertise
```

上电默认发广播,广播名字为"cent_prph"。

用手机 "NRF CONNECT" app 连接广播名字为 "cent_prph" 广播, 连上后此时无广播无扫描。
 串口发送 "ADV_START\r\n", 串口 log 输出如下:

```
Try to load HW calibration data.. DONE.
               : 0x1
- Chip Info
- Chip FT Version : 255
- Chip FT Version : 2
- Chip MAC Address
- Chip MAC Address : D000000017D
- Chip UID : FD0311230F37560365
- Chip Flash UID : 425031563233391711
                      : 425031563233391711230F3756036578
- Chip Flash Size : 512 KB
LL Spark Controller Version:d7c4bfa
APP version: 0.144.38920
ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
blehr_advertise
connection established; status=0
blehr_advertise
```

连上后继续发广播。用其他手机"NRF CONNECT" app 可以连接新发出的广播。

3. 作为主机,如果空中有 bleprph_enc 存在,则会主动连接上。

```
连上后的 log 如下:
```

```
LL Spark Controller Version:d7c4bfa

APP version: 0.144.38920

ble_store_config_num_our_secs:0

ble_store_config_num_cccds:0

blehr_advertise

connection established; status=0

blehr_advertise

scan start fail

Try to load HW calibration data.. DONE.

- Chip Info : 0x1
```

```
- Chip CP Version : 255
- Chip FT Version : 2
- Chip MAC Address : D000000017D
- Chip UID : FD0311230F37560365
- Chip Flash UID : 425031563233391711230F3756036578
- Chip Flash Size : 512 KB
LL Spark Controller Version:d7c4bfa
APP version: 0.144.38920
ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
blehr_advertise
Connection established handle=0 our_ota_addr_type=0 our_ota_addr=7d:01:00:00:00:00:d0 our_id_
→addr_type=0 our_id_addr=7d:01:00:00:00:d0 peer_ota_addr_type=0 peer_ota_
 \rightarrow addr=cd:00:00:00:00:00:d0 \text{ peer_id_addr_type=0 peer_id_addr=cd:00:00:00:00:00:d0 conn_itvl=40_{ \sqcup } } 
\rightarrow conn_latency=0 supervision_timeout=256 encrypted=0 authenticated=0 bonded=0
Service discovery complete; status=0 conn_handle=0
Read complete; status=0 conn_handle=0 attr_handle=12 value=0x00
Write complete; status=270 conn_handle=0 attr_handle=22
Subscribe complete; status=0 conn_handle=0 attr_handle=20
```

如果还需要连接其他广播设备,串口发送 "SCAN_START\r\n"。

- 4. 多连接相关:
 - 目前例程默认配置两主两从, 配置的宏如下所示:

```
/* CENTRAL maximum number of states supported */
// <o> BT_MAX_NUM_OF_CENTRAL
#define CONFIG_BT_MAX_NUM_OF_CENTRAL 2
// <i> CENTRAL maximum number of states supported
/* PERIPHERAL maximum number of states supported */
// <o> BT_MAX_NUM_OF_PERIPHERAL
#define CONFIG_BT_MAX_NUM_OF_PERIPHERAL 2
// <i> PERIPHERAL maximum number of states supported
```

- 可以根据自己的需求修改宏参数即可,受芯片 ram 资源限制,目前最多支持两主两从。
- 可修改宏" PAN_BLE_CTLR_BUFFER_ALLOC" 增加多角色的数量。

5 RAM/Flash 资源使用情况

PAN107x:

RAM Size:40.35 k Flash Size: 127.26k

3.1.4 BLE Distance

1 功能概述

此项目演示从机 heartrate 服务,可以配合手机 nrf connect 进行距离演示。基本功能和 heartrate 从 机功能类似,在其基础上增加了写配合调整 phy 的动作,主要是 S8 coded。

2 环境要求

• board: pan107x evb

- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)
- 手机 app nrf connect

3 编译和烧录

例程位置: <home>\nimble\samples\bluetooth\bleprph_distance\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 烧录完成后,设备会显示上电 log,连接上会显示 Connection established,主机订阅完成后输 出 subscribe event; 。

```
Try to load HW calibration data.. DONE.

- Chip Info : 0x1

- Chip CP Version : 255

- Chip FT Version : 4

- Chip MAC Address : D000000001E5

- Chip UID : E501017FFD375603B8

- Chip Flash UID : 4250315632333917017FFD375603B878

- Chip Flash Size : 512 KB

LL Spark Controller Version:d7c4bfa

app started

APP version: 1.240.65406

connection established; status=0
```

- 2. 使用手机 nrf connect 扫描蓝牙设备名称 ble_distance 并且连接
- 3. 设置相应的 phy 并且连接

需要注意的是,对于 1M, 2M, S2 模式直接使用 nrf connect app 操作接口,但是 s8 模式需要 EVB 板 进行配合操作下。首先确认 EVB 上的 RGB 的跳线帽是否连接,然后按 3 次 key1 键使得 RGB 颜色 变成蓝色,然后再次使用 nrf connect 连接,切换到 s8 模式即可。

5 RAM/Flash 资源使用情况

PAN107x:

RAM Size:34.87 k Flash Size: 110.67k

3.1.5 BLE Peripheral ENC

1 功能概述

此项目演示从机 ANS 服务以及自定义加密特性演示功能,可以配合主机 sampleble central 演示主从 连接,同时也可以配合手机 nrf connect 演示配对加密功能。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)
- 手机 app nrf connect

06:44 🖉 🍪 🙇		∦ 101 ⊋ 101 4G 100 100				
≡ Devices		DISCONNECT				
BONDED	ADVERTISER	BLE_DISTANCE ×				
CONNECTED NOT BONDED	CLIENT	SERVER 🚦				
Heart Rate	Read charact	eristics				
PRIMARY SEF	Enable CCCDs					
UUID: 0x1804 PRIMARY SEF	Read remote	RSSI				
	Reliable write	•				
	Request conn	ection priority 🕨				
	Request MTU					
	Read PHY					
	Set preferred	PHY				
		≡,				
× <	\bigcirc					

3 编译和烧录

例程位置: <home>\nimble\samples\bluetooth\bleprph_enc\keil_107x

使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 烧录完成后,设备会显示上电 log,连接上会显示 Connection established,主机订阅完成后输 出 subscribe event; 。

```
[11:46:57.699]LL Controller Version:bd5923c
[11:46:57.736]ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
registered service 0x1800 with handle=1
registering characteristic 0x2a00 with def_handle=2 val_handle=3
registering characteristic 0x2a01 with def_handle=4 val_handle=5
registered service 0x1801 with handle=6
registering characteristic 0x2a05 with def_handle=7 val_handle=8
registered service 0x1811 with handle=10
registering characteristic 0x2a47 with def_handle=11 val_handle=12
registering characteristic 0x2a46 with def_handle=13 val_handle=14
registering characteristic 0x2a48 with def_handle=16 val_handle=17
registering characteristic 0x2a45 with def_handle=18 val_handle=19
registering characteristic 0x2a44 with def_handle=21 val_handle=22
registered service 59462f12-9543-9999-12c8-58b459a2712d with handle=23
registering characteristic 33333333-2222-2222-1111-111100000000 with def_handle=24 val_
\rightarrowhandle=25
registering descriptor 34343434-2323-2323-1212-121201010101 with handle=27
[11:46:57.796]Device Address: 01 02 03 04 05 06
[11:47:00.271] connection established; status=0 handle=0 our_ota_addr_type=0 our_ota_
→addr=01 02 03 04 05 06
our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
peer_ota_addr_type=0 peer_ota_addr=06 06 03 04 05 06
```

```
[11:47:02.454]subscribe event; conn_handle=0 attr_handle=19 reason=1 prevn=0 curn=1

→previ=0 curi=0
```

conn_itvl=32 conn_latency=0 supervision_timeout=256 encrypted=0 authenticated=0 bonded=0

2. 使用手机 nrf connect 扫描蓝牙设备名称 nimble-bleprph 并且连接

peer_id_addr_type=0 peer_id_addr=06 06 03 04 05 06

5 RAM/Flash 资源使用情况

PAN107x:

RAM Size:35.14 k Flash Size: 144.41k

3.1.6 BLE Peripheral HR

1 功能概述

此项目演示从机 heartrate 服务,可以配合手机 nrf connect 进行演示,此功能支持 pan101x 和 pan107x 芯片

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)
- 手机 app nrf connect

3 编译和烧录

pan107x 芯片例程位置: <home>\nimble\samples\bluetooth\bleprph_hr\keil_107x pan101x 芯片例程位置: <home>\nimble\samples\bluetooth\bleprph_hr\keil_101x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 烧录完成后,设备会显示上电 log,连接上会显示 Connection established,主机订阅完成后输 出 subscribe event; 。

```
[13:17:18.158]LL Controller Version:bd5923c
```

[13:17:18.197]app started

```
[13:18:20.460]connection established; status=0
```

[13:18:26.943]subscribe event; cur_notify=1
value handle; val_handle=3

2. 使用手机 nrf connect 扫描蓝牙设备名称 ble_hr 并且连接

5 RAM/Flash 资源使用情况

PAN107x:

RAM Size:33.37 k Flash Size: 113.55k

PAN101x:

Flash Size: 92.84 k RAM Size: 14.74 k

3.1.7 BLE Peripheral HR OTA

1 功能概述

此项目演示从机 heartrate 以及用于 BLE 升级的 SMP 服务,可以配合手机 nrf connect 进行演示该 OTA 功能。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)
- 手机 app nrf connect

13:18		≵ \∑ ॡ HD D 56 HDD 56 HDD 56	91)
≡ Dev	vices	DISCONNECT	:
BONDED	ADVERTISER	BLE_HR 06:05:04:03:02:08	×
CONNECTED NOT BONDED	CLIENT	SERVER	0 0 0
Heart Rate UUID: 0x180D PRIMARY SER) RVICE		
Heart Rat UUID: 0x2A Properties: Value: Hea Contact is I	te Measureme A37 NOTIFY rt Rate Measure Detected	nt ment: 92 bpm,	*
Descriptor Client Char UUID: 0x29 Value: Noti	s: acteristic Config 202 fications enabled	uration	<u>+</u>
Body Sen UUID: 0x2A Properties:	sor Location A38 READ	4	↓
Device Infor UUID: 0x180A PRIMARY SER	rmation N VICE		
Manufact UUID: 0x2A Properties:	urer Name Str A29 READ	ring	↓
Model Nu UUID: 0x2A Properties:	mber String A24 READ		+
~ <	0		

3 编译和烧录

例程位置: <home>\nimble\samples\bluetooth\bleprph_hr_ota\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 分别编译和烧录 pan107x_mcu_boot 和 bleprph_hr_ota 工程, 上电后 log 如下。

```
Try to load HW calibration data.. DONE.

- Chip Type : 0x80

- Chip CP Version : None

- Chip FT Version : 8

- Chip MAC Address : D0000C0CBBF5

- Chip Flash UID : 32313334320EAC834330FFFFFFFFFF

- Chip Flash Size : 512 KB

LL Spark Controller Version:d7c4bfa

app started
```

2. 然后编译用于升级的测试固件,任意工程均可用于升级,但是其他工程暂无 OTA 功能,为了模拟 实际应用中的连续更新 OTA 升级,我们将 bleprph_hr_ota 修改启动 log,以便生成的固件不一 样。如果升级的固件和运行的固件是一样的, nrf connectapp 检查校验签名一致则不进行升级, 校验签名和 bin 文件内容有关。

```
void app_main(void)
{
    int rc;
    printf("app started ota success\n");/* 此处为修改处,升级后将打印该 log*/
    #if CONFIG_SMP_OTA
    img_mgmt_module_init();
    #endif
```

- 生成的 image 在路径 bleprph_hr_ota\keil\Images 路径下, 找到 ndk_app.signed.bin 文件, 将该文件导入到手机 APP。
- 4. nrf connect 扫描连接 ble_hr 设备,连接上会显示 SMP Service,同时右上角会 DFU 标示。点 击该 DFU 标示选则待升级的 "ndk_app.signed.bin'文件,点击 Test and Confirm,启动 OTA 升级 流程。
- 5. 升级完成后设备会自动复位,并且打印对应 bin 文件启动 log。

Try to load HW calibration data.. DONE. - Chip Type : 0x80 - Chip CP Version : None - Chip FT Version : 8 - Chip FT Version : 8 - Chip Flash UID : 32313334320EAC834330FFFFFFFFFFF - Chip Flash Size : 512 KB LL Spark Controller Version:d7c4bfa app started ota success /*此处为我们修改后的启动 log*/ connection established; status=0

5 RAM/Flash 资源使用情况

PAN107x:

RAM Size:34.09 k Flash Size: 117.27k

3.1.8 BLE Peripheral Throughput Test

1 功能概述

此项目演示从机吞吐率测试,当前版本软件需要 nrf connect dongle 进行演示。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)
- nrf connect dongle

3 编译和烧录

例程位置: <home>\nimble\samples\bluetooth\bleprph_throughput\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 烧录完成后,设备会显示上电 log,使用 pc nrf connect 连接即可。

```
Try to load HW calibration data. DONE.
- Chip Info
                    : 0x1
- Chip CP Version
                    : 255
- Chip FT Version
                    : 4
- Chip MAC Address : D000000066D
                    : 6D06010CF8375603CE
- Chip UID
- Chip Flash UID
                    : 4250315632333917010CF8375603CE78
- Chip Flash Size : 512 KB
LL Spark Controller Version:d7c4bfa
BT controller memory pool used: 5624 bytes, remain bytes: 0, total:5624
app started
APP version: 104.70.30977
registered service 0x1800 with handle=1
registering characteristic 0x2a00 with def_handle=2 val_handle=3
registering characteristic 0x2a01 with def_handle=4 val_handle=5
registered service 0x1801 with handle=6
registering characteristic 0x2a05 with def_handle=7 val_handle=8
registered service 00000001-8c26-476f-89a7-a108033a69c7 with handle=10
registering characteristic 0000006-8c26-476f-89a7-a108033a69c7 with def_handle=11 val_
\rightarrowhandle=12
registering characteristic 0000000a-8c26-476f-89a7-a108033a69c7 with def_handle=13 val_
\rightarrowhandle=14
registering characteristic 0000000b-8c26-476f-89a7-a108033a69c7 with def_handle=16 val_
\rightarrowhandle=17
gatts_on_sync
Device Address: 06:09:09:09:09:08adv start
```

2. 使用软件 nrf connect for Desktop Bluetooth Low Energy 扫描蓝牙设备名称 ble_throughput 设备并且连接

```
3. 点击齿轮设置图标,
```

依次需要设置

1. Update Connection, 设置连接间隔为 15ms。

🖇 nRF Connect for Desktop Bluetooth Low Energy Standalone v4.0.4

■ RF52 Connectivity ▲ D4E6ACEECF47	CONNECTION MAP SERVER SETUP ABO	DUT	
Sort by signal strength	■ nRF5x Adapter ■ D4:E6:AC:EE:CF:47	ø	
Filter: Device name or address Active scan	Generic Access	bleprph_throughput Peripheral 06:09:09:09:09:08	\$
bleprph_throughput -27 dBm	Generic Attribute	Generic Access	Update connection Update phy
06:09:09:09:09:08 Connect ♂ • Details		Generic Attribute	Update data length Update MTU
 <unknown name=""> -54 dBmi</unknown> 6B:7C:9F:BA:9B:1F Connect 𝔄 		000000018C26476F89A7A108033A69C	Pair
<unknown name=""> -65 dBm</unknown>			Disconnect
A:2C:A6:91:48:22 Connect ♂ • Details			
<unknown name=""> -67 dBm) 22:30:72:76:33:8F Connect Ø > Details -67 dBm)</unknown>			
<unknown name=""> -70 dBm at 04:38:F8:F3:15:08 Connect Ø > Details </unknown>			

图 9: nrf connect 连接 throughput 设备

- 2. Update phy, 根据测试需要设置为 1M 或者 2M。
- 3. Update data length, 设置为 251bytes。
- 4. Update MTU, 设置为 247bytes。

PHY 模式	参考速率
$1\mathrm{M}$	$630113 \mathrm{\ bps}$
2M	371850 bps,

5 RAM/Flash 资源使用情况

PAN107x:

RAM Size:40.35 k Flash Size: 109.02k

3.2 解决方案

3.2.1 BLE HID Selfie

1 功能概述

此项目演示基于 HID 服务的自拍服务,用 K1 和 K2 模拟的音量键,我们可以在相机模式下可以实现拍照功能。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)
- 手机 app nrf connect

3编译和烧录

例程位置: <home>\nimble\samples\solutions\ble_hid_selfie\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 在设置蓝牙界面连接 nimble_hid 进行配对,通过按键 KEY1 和 KEY2 模拟音量增大和减小,同时利用音量增大键和减小键实现拍照快捷键功能。

```
[19:23:23.691] Try to load HW calibration data.. DONE.
             : 0x80
- Chip Type
- Chip CP Version : None
- Chip FT Version : 8
- Chip MAC Address : D0000C0CBBF5

    Chip Flash UID : 32313334320EAC834330FFFFFFFFFF
    Chip Flash Size : 1024 KB

LL Spark Controller Version:b0e99c4
[19:23:23.735] ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
registered service 0x1812 with handle=1
registering characteristic 0x2a4a with def_handle=2 val_handle=3
registering characteristic 0x2a4b with def_handle=4 val_handle=5
registering characteristic 0x2a4d with def_handle=6 val_handle=7
registering descriptor 0x2908 with handle=9
registering characteristic 0x2a4d with def_handle=10 val_handle=11
registering descriptor 0x2908 with handle=13
registering characteristic 0x2a4c with def_handle=14 val_handle=15
Device Address: 01 02 03 04 05 06
[19:23:42.214] connection established; status=0 handle=1 our_ota_addr_type=0 our_ota_
→addr=01 02 03 04 05 06
our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
 peer_ota_addr_type=1 peer_ota_addr=1e ee c1 b6 69 57
 peer_id_addr_type=1 peer_id_addr=1e ee c1 b6 69 57
 conn_itvl=24 conn_latency=0 supervision_timeout=500 encrypted=0 authenticated=0 bonded=0
[19:23:45.043] encryption change event; status=0 handle=1 our_ota_addr_type=0 our_ota_
→addr=01 02 03 04 05 06
our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
peer_ota_addr_type=1 peer_ota_addr=1e ee c1 b6 69 57
peer_id_addr_type=1 peer_id_addr=1e ee c1 b6 69 57
\verb|conn_itv|=24 \ \verb|conn_latency=0 \ \verb|supervision_timeout=500 \ \verb|encrypted=1 \ \verb|authenticated=0 \ \verb|bonded=1| \ \verb|}
ediv=0 rand=0 authenticated=0 ltk= cddfa0325abc4490ff77622c3075800a irk=
ediv=0 rand=0 authenticated=0 ltk= cddfa0325abc4490ff77622c3075800a irk=
=4a3711a0c1b7cd2c92d64048e813fe34
                                                                                    (下页继续)
```

```
(续上页)
```

```
[19:23:45.432] connection updated; status=0 handle=1 our_ota_addr_type=0 our_ota_addr=01
 →02 03 04 05 06
  our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
  peer_ota_addr_type=1 peer_ota_addr=1e ee c1 b6 69 57
  peer_id_addr_type=0 peer_id_addr=07 49 34 4d af 50
  conn_itvl=6 conn_latency=0 supervision_timeout=500 encrypted=1 authenticated=0 bonded=1
 [19:23:45.610] connection updated; status=0 handle=1 our_ota_addr_type=0 our_ota_addr=01
 →02 03 04 05 06
  our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
  peer_ota_addr_type=1 peer_ota_addr=1e ee c1 b6 69 57
  peer_id_addr_type=0 peer_id_addr=07 49 34 4d af 50
  conn_itvl=24 conn_latency=0 supervision_timeout=500 encrypted=1 authenticated=0 bonded=1
 [19:23:46.352] subscribe event; conn_handle=1 attr_handle=7 reason=1 prevn=0 curn=1
 →previ=0 curi=0
 [19:23:46.412] subscribe event; conn_handle=1 attr_handle=11 reason=1 prevn=0 curn=1
 →previ=0 curi=0
[19:23:48.997] GPIO ISR in..
PO4 occurred (KEY1 音量增大)
notify_tx event; conn_handle=1 attr_handle=11 status=0 is_indication=Onotify_tx event;

where the state of the st
[19:23:49.544] GPIO ISR in..
P04 occurred
notify_tx event; conn_handle=1 attr_handle=11 status=0 is_indication=0notify_tx event;__
 ⇔conn_handle=1 attr_handle=11 status=0 is_indication=0key_vol_up pressed
 [19:23:50.843] GPIO ISR in..
P05 occurred (KEY2 音量减小)
notify_tx event; conn_handle=1 attr_handle=11 status=0 is_indication=0key_vol_down pressed
notify_tx event; conn_handle=1 attr_handle=11 status=0 is_indication=0
[19:23:51.443] GPIO ISR in..
P05 occurred
notify_tx event; conn_handle=1 attr_handle=11 status=0 is_indication=0key_vol_down pressed
notify_tx event; conn_handle=1 attr_handle=11 status=0 is_indication=0
```

1. hog 相关 GATT Service 的初始化在 gatt_svr.c 中:

```
static const struct ble_gatt_svc_def gatt_svr_svcs[] = {
   {
       /* Service: Heart-rate */
       .type = BLE_GATT_SVC_TYPE_PRIMARY,
       .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS),
        .characteristics = (struct ble_gatt_chr_def[]) { {
            /* Characteristic: hids information */
            .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS_INFO),
            .access_cb = gatt_svr_chr_access_hid,
            .flags = BLE_GATT_CHR_F_READ,
       }, {
            /* Characteristic: hids report map */
            .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS_REPORT_MAP),
            .access_cb = gatt_svr_chr_access_hid,
            .flags = BLE_GATT_CHR_F_READ | BLE_GATT_CHR_F_READ_ENC,
       }, {
```

(下页继续)

```
(续上页)
```

```
/* Characteristic: hids inout report */
        .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS_REPORT),
        .access_cb = gatt_svr_chr_access_hid_input_report,
        .flags = BLE_GATT_CHR_F_READ | BLE_GATT_CHR_F_NOTIFY,
        .val_handle = &hid_input_handle,
        .descriptors = (struct ble_gatt_dsc_def[]) { {
            .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS_REPORT_REF),
            .access_cb = gatt_svr_chr_access_hid_input_report,
            .att_flags = BLE_ATT_F_READ,
        }, {
            0
       }, }
    }, {
         /* Characteristic: hids consumer report */
        .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS_REPORT),
        .access_cb = gatt_svr_chr_access_hid_consumer_report,
        .flags = BLE_GATT_CHR_F_READ | BLE_GATT_CHR_F_NOTIFY,
        .val_handle = &hid_consumer_input_handle,
        .descriptors = (struct ble_gatt_dsc_def[]) { {
            .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS_REPORT_REF),
            .access_cb = gatt_svr_chr_access_hid_consumer_report,
            .att_flags = BLE_ATT_F_READ,
        }, {
            0
       }, }
   }, {
        /* Characteristic: Body sensor location */
        .uuid = BLE_UUID16_DECLARE(BT_UUID_HIDS_CTRL_POINT),
        .access_cb = gatt_svr_chr_access_hid,
        .flags = BLE_GATT_CHR_F_WRITE_NO_RSP,
    }, {
        0, /* No more characteristics in this service */
    }, }
}, {
     0, /* No more services. */
},
```

1. 相关 hog 硬件初始化和处理以及发送消息的函数在 hog.c 中

5 RAM/Flash 资源使用情况

PAN107x:

};

Flash Size: 147.62k RAM Size: 38.87 k

3.2.2 Solution: BLE HID Uart Mult Roles

1 功能概述

此 sample 为 pan107 上演示蓝牙 HID 串口设备的透传功能,支持 1 主 1 从

2 环境要求

• board: pan107 (芯片型号) 开发板 * 3

- uart0: overlay 中设置 P16, P17 作为默认的 LOG 输出端口
- uart1: overlay 中默认 P24 作为 Uart Tx 端-连接开发板 TX0, P10 作为 Uart Rx 端-连接开发板 RX0
- 蓝牙主机设备如手机

3编译和烧录

例程位置: <home>\nimble\samples\solutions\ble_hid_uart_mult_roles\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

4.1 AT 指令说明

- 1. 所有 AT 指令必须以\r\n 字符结尾。广播状态为 AT 指令模式。连接状态为数据透传。AT 指令 模式以字符串格式发送。数据透传串口以 hex 格式发送。
- 2. 存储参数:

```
typedef struct {
    uint32_t baudrate;
    uint8_t own_mac[6];
    uint8_t device_name[28];
    uint8_t name_length;
    uint8_t bond_mac[6];
    uint32_t passkey;
    uint32_t rst_flag;
} fmc_data;
```

全擦除后上电第一次打印默认初始化参数,用户可以后续通过 AT 命令进行修改

```
default_data_init
Baudrate : 115200
Own_mac : 11 22 33 44 55 66
Bond_mac : 11 22 33 44 66 88
Name_length : 9
Device_name : mult_uart
Passkey : 123456
```

3. AT 指令表

AT	AT 指令	回复	说明
指			
令			
<u></u> 月			
- 5	AT	AT+OK	测试串口通讯显否正堂
2	AT+RESET	OK+BESET	复位芯片指今
3	AT+DEFAULT	OK+DEFAULT	恢复出厂设置
4	AT+BAUD?	BAUD+ 波特率	10 进制值(1200-115200)
5	AT+BAUD+115200	OK+BAUDNO CHANGE	设置波特率 1200-115200 任意值超出配
	示 例:	BAUDOVER 115200 RE-	置限制会被拒绝,相等配置同样不会进
	AT+BAUD+115200	JECT	行设置切换波特率后需要更换波特率通
			信
6	AT+MAC?	MAC+ 地址	查询 MAC 地址
7	AT+SETMAC+	OK+SETMAC	设置 MAC 地址成功
	地址示例:		
	AT+SETMAC+11223	3445566	
8	AT+NAME?	NAME+ 广播名字	查询蓝牙广播名字
9	AT+SETNAME+	OK+SETNAME	设置广播名字成功,最长 28 字节,超
	名字示例:		过将会截断
10	AT+SETNAME+HEI	LO_PAN	
10	AT+BONDMAC?	BONDMAC+ 地址	
11	AT+BONDMAC+	OK+BONDMAC	设直扫描过滤条件的绑定地址成功
	地 址 不 例:	022446600	
19	AI + DONDMAC + 112	233440088 DIN	作业目和职业时需要去手机造绘入家现
12	$\Lambda T + PIN + \overline{m}$	IIN+ 以且癿刈峾问 OK+PIN	14月八仇乱八时而安任于饥喘和八番屿
15	对 宓 矾 示 例:		以且面码成为
	AT+PIN+234567		
14	AT+ADV START	OK+ADV START	
15	AT+ADV STOP	OK+ADV STOP	在广播开启条件下可以停止广播
16	AT+SCAN START	OK+SCAN STARTSCAN	依次输出2条第一条代表消息通信成功
		DONE	第二条代表扫描到设备后停止扫描
17	AT+SCAN STOP	OK+SCAN STOP	在扫描开启条件下可以停止扫描
18	AT+CONN 00	OK+CONNCONN	依次输出5条第一条代表消息通信成功
		DONEDISCOVERY	后四条代表连接后消息交互
		DONECCC DONECONN	
		WHOLE DONE	
19	AT+DISCONN 00	OK+DISCONNDISCONN	依次输出 2 条第一条代表消息通信成功
		DONE	第二条代表成功断连
20	AT+DEV SHOW	OK+DEV SHOW	□显示连接列表目前默认在 log 端口显示
	-14.71		列表有需要可以移植到透传端口显示
21	其他	AT+ERROR	禾定义

注: 当前 NDK 烧录代码后,默认开启广播,未开启扫描,命令 14-20 中仅 16 可用,并且扫描到指定 UUID 进行自动连接

1. 连接状态下,发送透传消息以 hex 格式发送,消息格式如下

Pat-	Send Connect Index(1B)	data(0~200B)
tern(1B)		
0x5A	发送给 index 的参数为置位 index bit 位 bit0 为发送给从机, bit1 为	
	发送给主机	

4.2 演示流程

4.2.1AT 配置测试 命令 1-13 可以灵活配置和读取默认配置参数,先进行测试后,建议发送 AT+DEFAULT 恢复默认配置

注意:

- 1. 目前指令 5 设置 921600 会返回信息 OVER 115200 REJECT,设置相等值会返回 NO CHANGE BAUD,设置 115200 以下的串口波特率会返回 OK+BAUD RESET 并 reset 芯片,切换波特率可以继续通信测试
- 2. 部分设置命令会答应 RESETING... 进行芯片重启

图 10: AT 指令测试窗口

4.2.2 蓝牙状态测试 主机和从机可以同时支持,默认上电开启了广播,最多支持1主1从

准备 2 块板子 A 和 B, 分别烧录程序后, A 板子只作为从机, 可以通过 AT 指令修改设备 mac 地址和 名字, 防止手机扫描到两个设备信息完全一样

然后对 B 板子以以下流程进行测试

4.2.2.1 从机模式 作为从机默认上电开启了蓝牙广播,测试流程可以按照以下顺序

- 1. 手机端蓝牙连接设备
- 2. 手机端对属性进行 notify enable
- 3. 芯片端发送消息上报
- 4. 手机端发送消息下发

4.2.2.2 **主机模式** 作为主机,需要主动开始扫描,扫描到设备后,主动进行连接已经开启的另一块从机 设备,连接从机时默认会进行服务发现、notify enable,之后可以进行消息透传测试

- 1. AT+SCAN START, 成功连接后返回 SCAN DONE
- 2. 芯片主机端进行数据传输测试
- 3. 可以进行第二块从机的准备和完成扫描连接流程
- 4. 可以对主机从机同时进行传输

5 开发说明

5.1 **功耗说明** 功耗测试分为广播态测试,连接态测试,并在两种状态下可以通过电流观察空闲 WFI 状态休眠电流

功耗测试结果:

工作模式	平均电流 (mA)	WFI 电 流(uA)
广播 (35ms 广播间隔)	1.18	885
连接(50ms 连接间隔)	0.953	885

6 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 153.36k RAM Size: 44.14 k

3.2.3 Solution: BLE Mouse

1 功能概述

此 sample 为 pan107 上演示蓝牙鼠标自动画圈功能 (EVB 验证)

2 环境要求

- board: pan107 (芯片型号) 开发板
- uart0: overlay 中设置 P16, P17 作为默认的 LOG 输出端口
- 蓝牙主机设备如 PC 或者手机

3编译和烧录

例程位置: <home>\nimble\samples\solutions\ble_mouse\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

目前为基础 demo, 支持 evb 上配对并识别为鼠标设备, 连接后可以运行自动画圈功能

4.1 操作流程说明

- 1. 编译后全部擦除下载
- 2. PC 搜索名为 pan_mouse 的鼠标设备并连接
- 3. 连接后多插拔几次 P04 启动自动画圈功能进行验证

5 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 144.58k RAM Size: 35.98 k

3.2.4 Solution: BLE Panchip-CTE Beacon

1 功能概述

此项目演示磐启蓝牙定位标签的功能,通过发送特定的广播数据,实现蓝牙定位功能。 这是磐启蓝牙定位方案中的一部分,有关定位方案的更多信息请参考**[待补充]**。

2 环境要求

- board: pan107
- uart (option): 显示串口 log

3编译和烧录

例程位置: <home>\nimble\samples\solutions\ble_panchip_cte_beacon\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

烧录完成后,设备自动启动蓝牙广播,可以在手机 nRF Connect 或抓包工具上获取如下信息:

- Advertising Type: ADV_SCAN_IND
- Advertising Interval Time: 250ms
- Company ID: (Shanghai Panchip Microelectronics Co., Ltd (0x07D1)
- Device Name: PANCHIP-CTE Beacon

下图是 nRF Connect(Android) 扫描到设备后显示的信息。

5 广播数据

广播数据包含两个 AD Element, 如下表。

Wireless by Nordic

In-	Data	Name	Description
dex			
(Byte)		
0	0x02	Leng	thLength of this AD Element 1
1	0x01	AD	Flags
		Type	
2	0x06	Data	BT_LE_AD_GENERAL, BT_LE_AD_GENERAL
3	0x1B	Leng	thLength of this AD Element 2
4	0xFF	AD	Manufacturer Specific Data
		Type	
5:6	0x07D1	Com-	Shanghai Panchip Microelectronics Co., Ltd 厂商 ID 可由
		pany	用户自定义用于区分设备厂家,标签和基站需要保持一致。
		ID	
7	0x01	Packe	t定位包 ID,用于区分同一厂家的不同设备,如标签、手环、
		ID	IOS 微信小程序和安卓微信小程序等,标签使用 0x01。该
			部分可由用户自定义,标签和基站需保持一致。
8	0x20	De-	设备类型
		vice	
		Type	
9	0x15	Head	erCarries information of Tag's TX rate, TX power and ID
			type
10:16	0xD2, 0x12, 0x03, 0x00,	Tag	用于区分不同的标签
	0x02, 0x23,	ID	
17	0xC9	Chec	k-CRC-8 [Device Type, Header, Tag ID]
		sum	
18:31	0x67, 0xF7, 0xDB, 0x34,	DF	该字段为辅助定位使用的固定字节。该段内容需保证空中抓
	0xC4, 0x03, 0x8E, 0x5C,	Field	取到的是固定频率的电磁波。根据 2402MHz 广播通道的白
	0x0B, 0xAA, 0x97, 0x30,		化算法规则和蓝牙先发送低字节的低比特的特性。修改信道
	0x56, 0xE6		时,需要对此进行调整。

6 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 134.45k RAM Size: 32.98 k

3.2.5 BLE PRF SAMPLE

1 功能概述

此项目演示 BLE 从机和 2.4g 同时工作双模例程,BLE 从机例程介绍参考文档bleprph_hr.md。此例程 是在 bleprph_hr 例程基础上增加了 prf 2.4g 相关功能。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1)
- 手机 app nrf connect

3 编译和烧录

例程位置: <home>\nimble\samples\solutions\ble_prf_sample\keil_107x

//prf interval 500ms
//prf work duration 6 * 1.25ms

//priority lowest 0,1,2; 2

//prf event cb

使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 烧录完成后,设备复位会显示上电 log,上电后的 log 如下:

```
[15:57:38.486] 收 ← Try to load HW calibration data..
WARNING: Cannot find valid calib data in current chip!
- Chip Flash UID : 425031563233391711550D3756039C78
- Chip Flash Size : 512 KB
[15:57:38.519] 收 ← rcl calib:30284
[15:57:38.840] 收 ← LL Spark Controller Version:d7c4bfa
[15:57:38.910] 收 ← app started
[15:57:39.421] 收 ← tx done
[15:57:40.421] 收 ← tx done
```

"tx done"是 2.4g 发送完一包后的打印,例程默认每隔 500ms 发送一次。

2. 使用手机 nrf connect 扫描蓝牙设备名称 ble_hr 并且连接

广播和连接的同时也能发送 2.4g 包。

5 2.4g 初始化说明

2.4g 初始化必须在 BLE 开始广播前, 2.4g 初始化代码如下:

```
pan_ant_init();
```

```
extern uint32_t BB_UsToTick(uint32_t us);
extern uint32_t RTC_GetCurrentTick(void);
```

panchip_prf_init(&tx_config);
panchip_prf_set_chn(tx_config.rf_channel);

/*adr match bit */
PRI_RF_SetAddrMatchBit(PRI_RF, 0);
panchip_prf_set_data(&tx_payload);

```
/* Begin advertising */
blehr_advertise();
```

1. 需要定义一个结构体" ab_event_node_t"

2. 首先调用" pan_ant_init" 接口, 然后注册结构体" pan_ant_create(&prf_tx)"

13:18		∦ Ŋ 🤶 HD D 5G HDD 5G HDD 5G	91
≡ Dev	ices	DISCONNECT	:
BONDED	ADVERTISER	BLE_HR 06:05:04:03:02:08	×
CONNECTED NOT BONDED	CLIENT	SERVER	0 0
Heart Rate UUID: 0x180D PRIMARY SER	VICE		
Heart Rate UUID: 0x2A Properties: Value: Hear Contact is D	e Measuremer 37 NOTIFY t Rate Measuren Detected	n t nent: 92 bpm,	*
Descriptors Client Chara UUID: 0x29 Value: Notif	s: acteristic Configu 02 fications enabled	uration	+
Body Sens UUID: 0x2A Properties:	sor Location 38 READ		+
Device Infor UUID: 0x180A PRIMARY SER	mation VICE		
Manufacto UUID: 0x2A Properties:	urer Name Stri 29 READ	ing	↓
Model Nui UUID: 0x2A Properties:	m ber String 24 READ		+
~ <	0		

- 3. 结构体中需要填写几个关键参数: interval、slot_duration、anchor_point、AntStartCback、priority。
- 4. 注册完 2.4g 事件后就可以启动 2.4g 收发了,例程在 500ms 定时回调中启动 2.4g 发射
- 5. 发射完成后会有 tx 的中断

6 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 115.64k RAM Size: 36.10 k

3.2.6 Solution: BLE RGB Light

1 功能概述

本文主要介绍 PAN10xx BLE RGB 灯和手机 APP 进行连接,通过 APP 控制 RGB 灯的亮度与颜色,此 功能支持 pan101x 和 pan107x 芯片

2 环境要求

- board: pan107x 或者 pan101x
- uart (option): 显示串口 log
- 安卓亿觅精灵灯 app V1.5.5, 或微信小程序 (待补充)

3编译和烧录

pan107x 芯片例程位置: <home>\nimble\samples\solutions\ble_rgb_light\keil_107x pan101x 芯片例程位置: <home>\nimble\samples\solutions\ble_rgb_light\keil_101x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

- 1. PAN107 EVB 板 GPIO P11、P12、P14 与 RGB 电路用跳线帽连接。
- 2. EVB 板上电灯的颜色默认是蓝色, BLE 广播设备的名字是"b+EMIE Elfy"。
- 3. 打开安卓手机"亿觅精灵灯 "app,在 app 上启动搜索设备。
- 4. 搜索到后点击连接,连接成功后就可以控制灯的开关和颜色了。

5 设备连接和控制

5.1 广播数据

Adv Data	Descrip-	Length	Detail
Туре	tion		
0xff	Device id	6byte	0x11, 0x00, 0xc9, 0x7a, 0xbb, 0x8f, 0xdd, 0x4b, 0x00, 0x11
0x07	128-bit	16byte	0x9e, 0xca, 0xdc, 0x24, 0x0e, 0xe5, 0xa9, 0xe0,0x93, 0xf3, 0xa3,
	UUID		0xb5, 0x01, 0x20, 0x40, 0x6e
0x09	Device	n	"b+EMIE Elfy"
	name	byte	

Function	Service Attribute	UUID(128bit)
Useless	Primary service	0x9e, 0xca, 0xdc, 0x24, 0x0e, 0xe5, 0xa9, 0xe0,0x93, 0xf3, 0xa3,
		0xb5, 0x01, 0x20, 0x40, 0x6e
控制灯的	Write characteristic	0x9e, 0xca, 0xdc, 0x24, 0x0e, 0xe5, 0xa9, 0xe0, 0x93, 0xf3, 0xa3,
状态	declaration	0xb5, 0x02, 0x20, 0x40, 0x6e
Notify 灯	notify characteristic	0x9e, 0xca, 0xdc, 0x24, 0x0e, 0xe5, 0xa9, 0xe0,0x93, 0xf3, 0xa3,
的状态	declaration	0xb5, 0x03, 0x20, 0x40, 0x6e

5.2 GATT **服务**

5.3 通信协议

5.3.1 Light Control UUID = {0x9e, 0xca, 0xdc, 0x24, 0x0e, 0xe5, 0xa9, 0xe0, 0x93, 0xf3, 0xa3, 0xb5, 0x03, 0x20, 0x40, 0x6e}

Function	Length	Detail
off	2byte	off: 0xaa, 0x03
Color	5byte	0xaa,0x16,red: 0~255,green: 0~255,blue: 0~255

控制灯的开关、颜色。

5.3.2 Notify Light Status UUID = {0x9e, 0xca, 0xdc, 0x24, 0x0e, 0xe5, 0xa9, 0xe0, 0x93, 0xf3, 0xa3, 0xb5, 0x02, 0x20, 0x40, 0x6e}

每次收到控制命令后将灯的状态通知给手机 app。

6 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 136.08k RAM Size: 33.73 k

PAN101x:

Flash Size: 120.34k RAM Size: 15.67 k

3.2.7 BLE Vehicles Key

1 功能概述

此项目演示基于 HID 服务的自动连接服务,通过 RSSI 值的大小模拟实现电动二轮车的利用距离自动开关功能。

2 环境要求

- board: pan107x evb
- uart(option): 用来显示串口 log (波特率 921600, 选项 8n1) s_key

3 编译和烧录

例程位置: <home>\nimble\samples\solutions\ble_vehicles_key\keil_107x

使用 keil 进行打开项目进行编译烧录。

4 演示说明

1. 在设置蓝牙界面连接 vehicles key 进行配对后会自动跟踪 rssi 值的大小,模拟电动二轮车钥匙 实现近距离自动开关。

```
[19:57:21.854] Try to load HW calibration data.. DONE.
                : 0x80
- Chip Type
- Chip CP Version : None
- Chip FT Version : 8
- Chip MAC Address : D0000C0CBBF5

    Chip Flash UID : 32313334320EAC834330FFFFFFFFF
    Chip Flash Size : 1024 KB

LL Spark Controller Version:b0e99c4
[19:57:21.919] ble_store_config_num_our_secs:0
ble_store_config_num_peer_secs:0
ble_store_config_num_cccds:0
registered service 0x1812 with handle=1
registering characteristic 0x2a4a with def_handle=2 val_handle=3
registering characteristic 0x2a4b with def_handle=4 val_handle=5
registering characteristic 0x2a4d with def handle=6 val handle=7
registering descriptor 0x2908 with handle=9
registering characteristic 0x2a4d with def_handle=10 val_handle=11
registering descriptor 0x2908 with handle=13
registering characteristic 0x2a4c with def_handle=14 val_handle=15
Device Address: 01 02 03 04 05 06
[19:57:28.164] connection established; status=0 handle=1 our_ota_addr_type=0 our_ota_
→addr=01 02 03 04 05 06
 our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
 peer_ota_addr_type=1 peer_ota_addr=f4 be 2e 4e 35 50
 peer_id_addr_type=1 peer_id_addr=f4 be 2e 4e 35 50
 conn_itvl=24 conn_latency=0 supervision_timeout=500 encrypted=0 authenticated=0 bonded=0
[19:57:30.923] encryption change event; status=0 handle=1 our_ota_addr_type=0 our_ota_
→addr=01 02 03 04 05 06
 our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
peer_ota_addr_type=1 peer_ota_addr=f4 be 2e 4e 35 50
peer_id_addr_type=1 peer_id_addr=f4 be 2e 4e 35 50
conn_itvl=24 conn_latency=0 supervision_timeout=500 encrypted=1 authenticated=0 bonded=1
ediv=0 rand=0 authenticated=0 ltk= f5f99f23fb223b4ff0f5f7f21c0146d1 irk=_
ediv=0 rand=0 authenticated=0 ltk= f5f99f23fb223b4ff0f5f7f21c0146d1 irk=_
\leftrightarrow4a3711a0c1b7cd2c92d64048e813fe34
[19:57:31.223] connection updated; status=0 handle=1 our_ota_addr_type=0 our_ota_addr=01
→02 03 04 05 06
 our_id_addr_type=0 our_id_addr=01 02 03 04 05 06
 peer_ota_addr_type=1 peer_ota_addr=f4 be 2e 4e 35 50
 peer_id_addr_type=0 peer_id_addr=07 49 34 4d af 50
 conn_itvl=6 conn_latency=0 supervision_timeout=500 encrypted=1 authenticated=0 bonded=1
```

(下页继续)

connection updated; status=0 handle=1 our_ota_addr_type=0 our_ota_addr=01 02 03 04 05 06 our_id_addr_type=0 our_id_addr=01 02 03 04 05 06 peer_ota_addr_type=1 peer_ota_addr=f4 be 2e 4e 35 50 peer_id_addr_type=0 peer_id_addr=07 49 34 4d af 50 conn_itvl=24 conn_latency=0 supervision_timeout=500 encrypted=1 authenticated=0 bonded=1 [19:57:32.135] subscribe event; conn_handle=1 attr_handle=7 reason=1 prevn=0 curn=1 previ=0 curi=0 [19:57:32.189] subscribe event; conn_handle=1 attr_handle=11 reason=1 prevn=0 curn=1 previ=0 curi=0

```
[19:57:32.238] open led
```

- 2. 如果使用 EVB 板的话,请将 RGB-G 的跳线帽连接,如果 RSSI 距离达到接近阈值时会触发开的动作,足够远时会触发关的距离动作。
- 3. 关于 rssi 的滤波算法使用的是去除最大和最小值各 RSSI_REMOVE_BORDER_NUM 个, 默认 RSSI_REMOVE_BORDER_NUM 为 2 个, 排序使用冒泡排序。
- 4. RSSI 的整体处理在 hog.c 中。

5 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 144.30k RAM Size: 36.20 k

3.2.8 Solution: Electronic Shelf Label

1 功能概述

此 sample 为 pan107x(40pin 芯片) 在电子价签板下的应用。

具体支持的 feature 如下:

- 1. 外挂 spi flash: 外挂 flash 存储价签图案数据,每隔 45s 通过 dma 方式从 flash 读取一个图案
- 2. epd 墨水屏:外挂 flash 读取的数据通过 3 线 spi 传输给墨水屏,启动墨水屏刷屏
- 3. 低功耗模式:刷图完成后芯片及 epd 均进入休眠模式,模块进入超低功耗模式 (standby),定时 15s 唤醒
- 4. RF 发送:芯片唤醒进入 rf 发送流程
- 5. 每3次发送完成后,启动刷屏流程,1~4步骤重复

2 环境要求

- board: 'pan107x 40pin esl 价签板
- 外挂 flash、墨水屏
- 电流监测工具 nrf ppk

3编译和烧录

例程位置: nimble\pan107x_samples\solutions\esl\keil_107x 使用 keil 工具可以对其进行编译、烧录、调试等操作。

(续上页)

4 演示说明

- 1. 准备 esl 价签板, 107/FM/EPD 跳线帽短接
- 2. 插入 epd2266 墨水屏 (SE2266JS0C5)
- 3. 打开 PPK 并使用其供电 3.3v
- 4. 观测 PPK 电流变化及墨水屏刷屏过程(45s 刷屏一次), 电流每 15s 进入低功耗

5 主要数据结构说明

配置的结构体	$"pan_{}$	_prf_	_config_	_t",	各成员介绍如下:
--------	-----------	-------	----------	------	----------

Туре	name	Description
prf_mode_t	work_mode	工作模式配置,包括普通型和增强型
prf_chip_mode_	sedhip_mode	xn297 通信协议和 nordic 通信协议配置
prf_trx_mode_t	trx_mode	收发模式配置
prf_phy_t	phy	通信速率配置,可配置为 1M 和 2M
prf_crc_sel_t	crc	数据包 CRC 配置,可配置为 crc 16bit, crc 8bit, crc 24bit, no
		crc
prf_scramble_set	strc	数据包扰码的配置,可配置为使用扰码和不使用扰码
uint16_t	rx_timeout	接收超时时间配置,最大 50000us
uint16_t	rf_channel	2.4g 频点配置,任意频点可设 (2402Mhz~2480Mhz)
uint8_t	tx_no_ack	配置增强型模式下 tx 是否需要 ack
prf_trf_t	trf_type	nordic 的长包模式配置,最大 payload 的长度为 255
uint8_t	rx_length	rx 接收数据包长度配置,增强型模式下可不配置
uint8_t	sync_length	接入地址长度配置,可配置为 3、4、5 字节
uint8_t	sync[5]	接入地址的内容 (xn297 模式下可白化地址, 防止出现长 0 和长 1
		的地址)
prf_dev_sel_t	dev	设置 deviation,可以选择 BLE 模式 (1M 250k; 2M 500k), NRF
		模式(1M 160K;2M 320)
int8_t	tx_power	设置发射功率,范围 (-45dbm~7dbm)
uint8_t	pid_manual_	flagid 手动配置的标志,使能后可以自定义 pid
uint8_t	crc_include_sycac 计算包含地址	
uint8_t	src_include_s	y每化包含地址
uint16_t	tx_trans_tim	e发送传输时间设置
uint16_t	rx_trans_tim	e接收传输时间设置
prf_pipe_t	pipe	管道配置,可配置为 0~7

 $prf_mode_t:$

Туре	Value	Description
PRF_MODE_NORMAL	0	普通型
PRF_MODE_ENHANCE	1	增强型
PRF_MODE_NORMAL_M1	2	普通型 M1 模式

$prf_chip_mode_sel_t$:

Туре	Value	Description
PRF_CHIP_MODE_SEL_BLE	1	蓝牙模式
PRF_CHIP_MODE_SEL_XN297	2	XN297 模式
PRF_CHIP_MODE_SEL_NORDIC	3	NORCDIC 模式

$prf_trx_mode_t :$

Туре	Value	Description
PRF_TX_MODE	0	2.4G 发射
PRF_RX_MODE	1	2.4G 接收

prf_phy_t:

Туре	Value	Description
PRF_PHY_1M	1	1M 通信速率
PRF_PHY_2M	2	2M 通信速率
PRF_PHY_CODED_S8	3	S8 模式
PRF_PHY_CODED	4	S2 模式
PRF_PHY_250K	5	250K 模式

 $prf_crc_sel_t$:

Туре	Value	Description
PRF_CRC_SEL_NOCRC	0	no crc
PRF_CRC_SEL_CRC8	1	crc 8bit
PRF_CRC_SEL_CRC16	2	crc 16bit
PRF_CRC_SEL_CRC24	3	crc 24bit

$prf_scramble_sel_t:$

Туре	Value	Description
PRF_SRC_SEL_NOSRC	0	不使能扰码
PRF_SRC_SEL_EN	1	使能扰码

 $prf_dev_sel_t$:

Туре	Value	Description
PRF_DEV_NRF	1	NRF 模式 deviation 配置, 1M 170k, 2M 340K
PRF_DEV_BLE	2	NRF 模式 deviation 配置, 1M 250k, 2M 500K

 $prf_addr_length_sel_t$:

Туре	Value	Description
PRF_ADDR_LENGTH_SEL_3	3	3 BYTE 地址长度
PRF_ADDR_LENGTH_SEL_4	4	4 BYTE 地址长度
PRF_ADDR_LENGTH_SEL_5	5	5 BYTE 地址长度

$prf_pipe_t:$

Туре	Value	Description
PRF_PIPE0	1«0	管道 0
PRF_PIPE1	1«1	管道 1
PRF_PIPE2	$1 \ll 2$	管道 2
PRF_PIPE3	$1 \ll 3$	管道 3
PRF_PIPE4	$1 \ll 4$	管道 4
PRF_PIPE5	$1 \ll 5$	管道 5
PRF_PIPE6	1«6	管道 6
PRF_PIPE7	$1 \ll 7$	管道 7

prf_trf_t :

Туре	Value	Description
PRF_TRF_NORMAL	0	普通模式传输
PRF_TRF_NRF52	1	NRF 模式传输
PRF_TRF_B250K	2	B250K 模式传输

6 补充说明

补充说明当前功耗测试情况,支持中遇到的问题(供参考)及已知仍可能存在的问题

6.1 功耗说明 略

7 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 34.34k RAM Size: 3.53 k

3.2.9 Solution: Multimode Mouse

1 功能概述

此 sample 为 pan107 上演示 2.4G 鼠标跳频发送至 Dongle 自动画圈的功能,后续基于此扩展多模实体 鼠标功能

2 环境要求

- board: pan107 (芯片型号) 开发板 * 2
- uart0: overlay 中设置 P16, P17 作为默认的 LOG 输出端口

3 编译和烧录

例程位置: <home>\nimble\samples\solutions\multimode_mouse_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

准备好 multimode_mouse_dongle 烧录 dongle 程序,dongle USB 端插入电脑 烧录 multimode_mouse 工程,重启即可调频自动画圈

5 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 22.35k RAM Size: 7.22 k

3.2.10 Solution: Multimode Mouse Dongle

1 功能概述

此 sample 为 pan107 上演示 Dongle 配合主机端自动画圈的功能

2 环境要求

- board: pan107 (芯片型号) 开发板
- uart0: overlay 中设置 P16, P17 作为默认的 LOG 输出端口

3编译和烧录

例程位置: <home>\nimble\samples\solutions\multimode_mouse_dongle\keil_107x 使用 keil 进行打开项目进行编译烧录。

4 演示说明

准备好 multimode_mouse_dongle 烧录 dongle 程序, dongle USB 端插入电脑 烧录 multimode_mouse 工程, 重启即可调频自动画圈

5 RAM/Flash 资源使用情况

PAN107x:

Flash Size: 27.12k RAM Size: 8.37 k

蓝牙例程

源码路径: <PAN1070-NDK>\01_SDK\nimble\samples\bluetooth

例程	说明
Bluetooth:	演示蓝牙主从一体功能
Central and	
Peripheral	
Bluetooth:	演示蓝牙主机功能,发现设备并与设备建立连接和断连
Central	
Bluetooth:	演示外设以及加密配对功能,可以和主机示例进行对测
BLE Periph-	
eral ENC	
Bluetooth:	演示蓝牙从机功能,包含 GATT 服务: HR (Heart Rate),连接订阅服务后,会上报
Peripheral HR	虚拟的心率值,低功耗演示 demo
Bluetooth:	演示蓝牙丛机 OTA 功能, 包含完整的蓝牙通用的 SMP 服务, 配合手机 nrf connect
Peripheral	进行 OTA 升级
HR_OTA	
Bluetooth:	演示蓝牙从机 s2 s8 编码长距离传输的功能
Peripheral	
DISTANCE	
Bluetooth:	演示蓝牙多主多从功能
BLE Multi	
Roles	

解决方案

源码路径: <PAN1070-NDK>\01_SDK\nimble\samples\solutions

例程	说明
Solution: BLE	自拍解决方案,通过蓝牙 HID 控制手机拍照
HID Selfie	
Solution:	蓝牙串口透传解决方案, 演示蓝牙 hid 串口透传功能, 支持 1 主 1 从
BLE HID	
Uart Mult	
Roles	
Solution: BLE	Panchip 蓝牙定位标签方案,通过发送特定的广播数据,实现蓝牙定位功能
Panchip-CTE	
Beacon	
Solution:	BLE 和私有 2.4G 协议双模例程, BLE 和 2.4G 可同时工作
BLE PRF	
SAMPLE	
Solution: BLE	模拟蓝牙鼠标功能,连接电脑后进行模拟画圈演示
mouse	
Solution: BLE	蓝牙 RGB 灯控方案, 演示 BLE RGB 灯与手机 APP 进行连接, 通过 APP 控制
RGB Light	RGB 灯的亮度与颜色
Solution: BLE	蓝牙车钥匙解决方案, 演示基于 HID 服务的自动连接服务
Vehicles Key	
Solution:	电子货架标签方案演示例程,支持外部 SPI Flash 存储、EPD 墨水屏、低功耗模式、
Electronic	RF 通信等功能
Shelf Label	
Solution:	多模鼠标 sample, 目前仅支持 2.4G 模式自动画圈
Multimode	
Mouse	
Solution:	多模鼠标接收器,配合 2.4G 鼠标端自动画圈,测试收包数和距离使用
Multimode	
Mouse Dongle	

3.3 MCU Keil 例程

例程源码路径: <PAN1070-NDK>\03_MCU\mcu_samples

MCU 底层驱动 (Low Level Driver) Keil 例程:

例程	说明
MCU Low Level ADC Driver Sample	MCU 底层 ADC 驱动例程演示说明
MCU Low Level CLKTRIM Driver Sample	MCU 底层 Clock Trim 驱动例程演示说明
MCU Low Level CLK Driver Sample	MCU 底层 CLK 驱动例程演示说明
MCU Low Level DMA Driver Sample	MCU 底层 DMA 驱动例程演示说明
MCU Low Level eFuse Driver Sample	MCU 底层 eFuse 驱动例程演示说明
MCU Low Level FMC Driver Sample	MCU 底层 FMC 驱动例程演示说明
MCU Low Level GPIO Driver Sample	MCU 底层 GPIO 驱动例程演示说明
MCU Low Level I2C Driver Sample	MCU 底层 I2C 驱动例程演示说明
MCU Low Level PWM Sample	MCU 底层 PWM 驱动例程演示说明
MCU Low Level SPI Sample	MCU 底层 SPI 驱动例程演示说明
MCU Low Level TIMER Sample	MCU 底层 TIMER 驱动例程演示说明
MCU Low Level UART Sample	MCU 底层 UART 驱动例程演示说明
MCU Low Level WDT Sample	MCU 底层 WDT 驱动例程演示说明
MCU Low Level WWDT Sample	MCU 底层 WWDT 驱动例程演示说明
MCU DebugProtect Sample	MCU Debug Protect 调试接口保护例程演示说明
MCU PRF TRX Sample	MCU 私有 2.4G 通信开发指南
MCU PRF UI Distance Test Sample	MCU 私有 2.4G 距离测试例程演示说明

Chapter 4

开发指南

NDK Configuration 开发指南 4.1

4.1.1 1. 背景介绍

ndk 添加一套配置系统一方面方便用户进行开发,另一方面是为了方便管理不同芯片平台,本章主要介 绍配置的含义,以及 pan107x 和 pan101x 配置的区别。

4.1.2 2. 配置概述

图 1: configuration overview

pan_host_config 主要是 freertos 线程栈大小,以及 nimble host 传输的 buf 的配置,单独引用出 来,客户可以根据自己的需求优化 ram 的使用量 app_config_spark.h 主要是系统方案, soc, ble controller 相关的配置 image_map_config.h 主要是 OTA 时候, flash 区域的划分, 详情参考 [mcuboot]](./ndk_mcu_boot.md)

4.1.3 3. pan107x 和 pan101x 工程配置以及区别

pan101x 是一个只用 16k ram, pan107x 有 48K ram, 所以 pan101 只能运用在一些简单的外设功能, 下面介绍 101x 和 107x 配置不同, 方便用户移植 107x 的工程到 101x 芯片上,本次 sdk release BLE Peripheral HR 和 BLE RGB Light 例程中,分别演示了 pan107x 和 pan101x 的工程配置。用户可以参考进行修改,下面解释一些关键的差异点。

app_config_spark.h 配置

pan_host_config.h		bleprph_hr.map app_config_spark.h			
Expand All Collapse All Help T Show Grid		Expand All Collapse All Help Show Grid			
Option	Value	Option	Value		
APP and MCU Config		- APP and MCU Config			
System Clock	48M	System Clock	32M		
Periph Divide 101x 芯片	2	Periph Divide IU/X 心斤	2		
Enable DCDC (if disabled means LDO mode)	~	Enable DCDC (if disabled means LDO mode)	v		
FreeRTOS Heap Usage Print		FreeRTOS Heap Usage Print			
Vector Remap to Ram		Vector Remap to Ram	v		
System Watch Dog Enable	~	System Watch Dog Enable			
RM Function		RM Function	v		
Log Enable		Log Enable	v		
	~	i⊞Flash LDO Config	v		
BLE Stack Config		BLE Stack Config			
Use Chip unique Mac Address	~		✓		
Low-Speed Clock	XTL	Low-Speed Clock	XTL		
BT_MAX_NUM_OF_CENTRAL	0	BT_MAX_NUM_OF_CENTRAL	0		
BT_MAX_NUM_OF_PERIPHERAL	1	BT_MAX_NUM_OF_PERIPHERAL	1		
TX Power	0dBm	TX Power	0dBm		
Force Calib RCL		Force Calib RCL			
BT controller Memory Pool usage print		BT controller Memory Pool usage print			
BT AGC Init Mode	0	BT AGC Init Mode	0		
BT Debug Pin Init		BT Debug Pin Init			
Calib RF Frequency offset		Calib RF Frequency offset			
Low Power Config		Cow Power Config			
Low Power Enable	~	Low Power Enable	✓		
Detecting Temperature Optimize Param Enable		Detecting Temperature Optimize Param Enable	v		
Temperature Sample Interval	300	Temperature Sample Interval	300		
Flash Settings Config		Flash Settings Config			
Flash Settings(kv_store) Start Address	0x0003 C000	Flash Settings(kv_store) Start Address	0x0006 D000		
Flash Settings(kv_store) Sector Number (>=2)	4	Flash Settings(kv_store) Sector Number (>=2)	4		

图 2: app configuration

1. pan107x 可以选择 48M 或者 32M, 但是 pan101x 暂时只能选择 48M

2. ram function 功能, 107x 可以选择, 但是 pan101x **暂时不能选择**, 原因是 101x 的 ram 受限导致 的

3. flash settings 建议按照上图配置, pan101x 选择 0x3c000, pan107x 选择 0x6d000

其他选项 pan107x 或者 pan101x 都可以选择,只要确保 pan101x 可以编译通过即可。

pan_host_config 配置

自行参考各个工程的配置

ble_spark.lib

pan107x 选择 lib\pan107x_spark\ble_spark.lib pan101x 选择 lib\pan101x_spark\ble_spark.lib

芯片宏添加

4.2 NDK App 开发指南

本文主要通过一些示例,介绍蓝牙应用开发过程中常用的方法以及可能遇到的问题。

Vs Q	:\wor	kspa	ce\Z	eph	yr\n	imbl	e∖p	an	TUxx
File	Edit	Vie	w	Proj	ect	Flas	h	De	bug
	2	H é		¥			10	2	6
1		<u> </u>	•			AD AD	ble	prp	h_hr_
Projec	t							џ	x
Projec) ta) ti) o: reeR) p lisc ost) re ost ost) b) b) b	isks.c mers s_set TOS/ ort.c eap_4 s_lp.c etargu g misc porti le_sv att_sv le_sp	: .c up.c Port 4.c : et.c c_ga vr.c ark.l	p.c ib	ן		
•								•	•
🖭 Pr	oject	ि Во	oks	{}	Fun	c () <mark>.,</mark> T(emp	o

图 3: lib configuration

Options for Target 'bleprph_hr_spark' X Device Target Output Listing User C/D++ Asm Lisker Debug Utilities	Options for Target bleprph_hr_spark' Perice Target Output Listing Verr C/C++ Ann Linker Debug Utilities							
Preprocessor Symbols Define: [BLE_CFG_CONTROLLER=1.HOST_SUP_NIMBLE_SPARK_SUP_APP_NIMBLE_SPARK_SUP P_107; Undefine: [Preprocessor Symbols Define BLE_CFG_CONTROLLER+1.HOST_SUP NIMBLE_SPARK_SUP_APP NIMBLE_SPARK_SUP							
Language / Code Generation	Language / Code Generation Execute-only Code Strict ANSIC Warnings: All Warnings: All Warnings Outstriation: [Land 3 (C3) Func Container always int Cotation: Card and C3 (C3) Cotation: Card Card Card Card Card Card Card Card							
In the Control of Contro								

图 4: chip macro

4.2.1 1 基础指标

1.1 功耗

蓝牙在不同的工作模式下功耗如下表所示:

测试条件:

• 基于例程 nimble\samples\bleprph_hr

测试配置:CONFIG_SOC_DCDC_PAN1070,CONFIG_PM_ENABLE,CONFIG_LOW_SPEED_CLOCK_SRC 测试选项: LOW_POWER_TESET_CI_100MS 和 LOW_POWER_TESET_CI_1000MS

工作模式	tx power (dbm)	模式	休眠时钟	峰值电流 (mA)	休眠电流(uA)	平均电流 (uA, 100ms)	平均电流 (uA, 1000ms)
		DCDC	XTL	14.04	3.6	/	12.5
苏环广课			RCL	14.42	3.3	/	14
		100	XTL	13.3	3.5	/	20.6
	0	100	RCL	13.3	3.3	/	21.3
	U	DCDC	XTL	13.96	3.5	/	10.4
苏耳法护		DEDE	RCL	14.32	3.2	/	13.9
		LDO	XTL	11.74	3.5	/	14.4
			RCL	11.8	3.3	/	23
	7	DCDC	XTL	14.03	3.6	/	19.5
苏芽广爆			RCL	13.74	3.4	/	18
<u> </u>		LDO	XTL	27.59	3.7	/	34
			RCL	27.62	3.6	/	35.8
		DCDC	XTL	13.17	3.7	/	10.8
苏耳汝连			RCL	13.7	3.5	/	15.3
盖力迁该			XTL	27.13	3.6	/	16.1
			RCL	27.08	3.6	/	24.7

图 5: PAN1070 EVB 核心板功耗测试数据

4.2.2 2 开发流程

工作模式	tx power (dbm)	模式	休眠时钟	峰值电流 (mA)	休眠电流(uA)	平均电流 (uA, 100ms)	平均电流 (uA, 1000ms)		
	0	DCDC	XTL	13.73	3.6	/	12.5		
苏正广课			RCL	14.27	3.5	/	13.1		
			XTL	13.33	3.6	/	22.9		
			RCL	13.29	3.5	/	23		
		U	DCDC	DCDC	XTL	14.65	3.7	/	10.2
苏耳大体		DCDC	RCL	15.24	3.6	/	15.7		
<u> </u>		LDO	XTL	12.18	3.4	/	19.8		
			RCL	11.78	3.5	/	25.3		

图 6: PAN1070 EVB 核心板配置 latency 功耗测试数据

2.1 确认开发环境

参考 NDK 快速入门指南,确认软硬件开发环境,可以正常的编译、下载和调试 SDK 提供的基础例程。 建议连接板载的 micro USB,通过串口工具监测 Log。

2.2 参考相关例程

蓝牙开发需要了解一些蓝牙协议相关的知识,可以参考蓝牙协议规范,网上也有很多协议的介绍,此处 不作为重点。

当前 SDK 中提供了一些蓝牙相关的例程,涵盖了 central、peripheral 等。

在进行蓝牙开发之前,建议先看一下相关的文档,磨刀不误砍柴工,相信这些例程会对你的开发有所帮助。

2.3 了解蓝牙 app 代码的基本框架

2.3.1 app 和 host 初始化 我们以 bleprph_hr 为例, app 和 host 的初始化默认都是在 app_main 函数 中:

```
void app_main(void)
Ł
    int rc;
   printf("app started\n");
   /** set public address*/
   uint8_t pub_mac[6]={8,2,3,4,5,6};
   db_set_bd_address(pub_mac);
    /* Initialize the NimBLE host configuration */
   ble_hs_cfg.sync_cb = blehr_on_sync;
    ble_npl_callout_init(&blehr_tx_timer, (struct ble_npl_eventq *)nimble_port_get_dflt_
\rightarroweventq(),
                    blehr_tx_hrate, NULL);
   rc = gatt_svr_init();
   assert(rc == 0);
    /* Set the default device name */
   rc = ble_svc_gap_device_name_set(device_name);
    assert(rc == 0);
        hs_thread_init();
}
```
从这个初始化我们可以将真正需要的初始化切割出来:

- ble_hs_cfg.sync_cb = blehr_on_sync; 这个是 host 初始化完成后的回调函数, 一般是将需要 的自定义广播函数的回调添加此处。
- gatt_svr_init() GATT 服务初始化。
- hs_thread_init host 协议栈的初始化。
- blehr_gap_event 蓝牙状态事件的处理, 比如广播, 连接, 断连等, 可以关注下 blehr_gap_event 是在广播启动函数中 ble_gap_adv_start 注册的。注意: 对于主机是在扫描启动函数中 ble_gap_disc 注册的。

其实一般来说,一个蓝牙工程有广播,GATT 服务,蓝牙事件处理,基本就搭起一个蓝牙应用的框架了,我们再由此进行展开。

同时 ble_hs_cfg 是一个全局变量,很多关键回调函数和状态依赖它:

```
/** Obrief Bluetooth Host main configuration structure
 * Those can be used by application to configure stack.
\ast The only reason Security Manager (sm_ members) is configurable at runtime is
 * to simplify security testing. Defaults for those are configured by selecting
 * proper options in application's syscfg.
 */
struct ble_hs_cfg {
   /**
     * An optional callback that gets executed upon registration of each GATT
    * resource (service, characteristic, or descriptor).
     */
   ble_gatt_register_fn *gatts_register_cb;
    /**
     * An optional argument that gets passed to the GATT registration
     * callback.
     */
   void *gatts_register_arg;
    /** Security Manager Local Input Output Capabilities */
   uint8_t sm_io_cap;
    /** Obrief Security Manager OOB flag
    * If set proper flag in Pairing Request/Response will be set.
   unsigned sm_oob_data_flag:1;
    /** @brief Security Manager Bond flag
     * If set proper flag in Pairing Request/Response will be set. This results
     * in storing keys distributed during bonding.
     */
   unsigned sm_bonding:1;
    /** Obrief Security Manager MITM flag
     * If set proper flag in Pairing Request/Response will be set. This results
     * in requiring Man-In-The-Middle protection when pairing.
     */
   unsigned sm_mitm:1;
    /** @brief Security Manager Secure Connections flag
```

(续上页)

```
* If set proper flag in Pairing Request/Response will be set. This results
 * in using LE Secure Connections for pairing if also supported by remote
 * device. Fallback to legacy pairing if not supported by remote.
 */
unsigned sm_sc:1;
/** Obrief Security Manager Key Press Notification flag
 * Currently unsupported and should not be set.
 */
unsigned sm_keypress:1;
/** Obrief Security Manager Local Key Distribution Mask */
uint8_t sm_our_key_dist;
/** @brief Security Manager Remote Key Distribution Mask */
uint8_t sm_their_key_dist;
/** @brief Stack reset callback
 * This callback is executed when the host resets itself and the controller
 * due to fatal error.
 */
ble_hs_reset_fn *reset_cb;
/** Obrief Stack sync callback
 * This callback is executed when the host and controller become synced.
 * This happens at startup and after a reset.
 */
ble_hs_sync_fn *sync_cb;
/* XXX: These need to go away. Instead, the nimble host package should
 * require the host-store API (not yet implemented)...
 */
/** Storage Read callback handles read of security material */
ble_store_read_fn *store_read_cb;
/** Storage Write callback handles write of security material */
ble_store_write_fn *store_write_cb;
/** Storage Delete callback handles deletion of security material */
ble_store_delete_fn *store_delete_cb;
/** Obrief Storage Status callback.
 * This callback gets executed when a persistence operation cannot be
 * performed or a persistence failure is imminent. For example, if is
 * insufficient storage capacity for a record to be persisted, this
 * function gets called to give the application the opportunity to make
 * room.
 */
ble_store_status_fn *store_status_cb;
/** An optional argument that gets passed to the storage status callback. */
void *store_status_arg;
```

2.3.2 蓝牙广播或者扫描 广播函数:

};

```
static void
blehr_advertise(void)
{
    struct ble_gap_adv_params adv_params;
    struct ble_hs_adv_fields fields;
    int rc;
    /*
       Set the advertisement data included in our advertisements:
          o Flags (indicates advertisement type and other general info)
          o Advertising tx power
          o Device name
     */
    memset(&fields, 0, sizeof(fields));
    /*
    * Advertise two flags:
          o Discoverability in forthcoming advertisement (general)
     *
            o BLE-only (BR/EDR unsupported)
     */
    fields.flags = BLE_HS_ADV_F_DISC_GEN
                    BLE_HS_ADV_F_BREDR_UNSUP;
    fields.name = (uint8_t *)device_name;
    fields.name_len = strlen(device_name);
    fields.name_is_complete = 1;
    rc = ble_gap_adv_set_fields(&fields);
    if (rc != 0) {
        printf("error setting advertisement data; rc=%d\n", rc);
        return;
    }
    /* Begin advertising */
    memset(&adv_params, 0, sizeof(adv_params));
    adv_params.conn_mode = BLE_GAP_CONN_MODE_UND;
    adv_params.disc_mode = BLE_GAP_DISC_MODE_GEN;
    #if LOW_POWER_TESET_CI_100MS || LOW_POWER_TESET_LATENCY_100MS
    adv_params.itvl_min = BLE_GAP_ADV_ITVL_MS(100);
    adv_params.itvl_max = BLE_GAP_ADV_ITVL_MS(100);
    #endif
    #if LOW_POWER_TESET_CI_1000MS // LOW_POWER_TESET_LATENCY_1000MS
    adv_params.itvl_min = BLE_GAP_ADV_ITVL_MS(1000);
    adv_params.itvl_max = BLE_GAP_ADV_ITVL_MS(1000);
    #endif
   rc = ble_gap_adv_start(blehr_addr_type, NULL, BLE_HS_FOREVER,
                           &adv_params, blehr_gap_event, NULL);
    if (rc != 0) {
        printf("error enabling advertisement; rc=%d\n", rc);
        return:
   }
}
```

扫描函数:

(续上页)

```
/**
* Initiates the GAP general discovery procedure.
*/
static void
blecent_scan(void)
{
   uint8_t own_addr_type;
   struct ble_gap_disc_params disc_params;
   int rc;
    /* Figure out address to use while advertising (no privacy for now) */
   rc = ble_hs_id_infer_auto(0, &own_addr_type);
    if (rc != 0) {
        printf("error determining address type; rc=%d\n", rc);
        return;
    }
    /* Tell the controller to filter duplicates; we don't want to process
    * repeated advertisements from the same device.
     */
    disc_params.filter_duplicates = 0;
    /**
     * Perform a passive scan. I.e., don't send follow-up scan requests to
     * each advertiser.
    */
    disc_params.passive = 1;
    /* Use defaults for the rest of the parameters. */
   disc_params.itvl = 60;
   disc_params.window = 50;
   disc_params.filter_policy = 0;
   disc_params.limited = 0;
   rc = ble_gap_disc(own_addr_type, BLE_HS_FOREVER, &disc_params,
                      blecent_gap_event, NULL);
    if (rc != 0) {
        printf("Error initiating GAP discovery procedure; rc=%d\n",
                   rc);
   }
}
```

在初始化状态这两个函数最终会注册到 ble_hs_cfg.sync_cb。

2.3.3 GATT 服务初始化 对于 GATT 服务初始化,我们看以下一段代码:

```
int gatt_svr_init(void)
{
    int rc;
    rc = ble_gatts_count_cfg(gatt_svr_svcs);
    if (rc != 0) {
        return rc;
    }
    rc = ble_gatts_add_svcs(gatt_svr_svcs);
    if (rc != 0) {
        return rc;
    }
```

return 0;

}

ble_gatts_count_cfg 获取 GATT config 描述个数和 ble_gatts_add_svcs``注册 GATT 服务这两个 函数都会涉及到 gatt_svr_svcs 这个变量,跳转过去我们发现 gatt_svr_svcs 真正的定义 GATT 服务的数据库,我们可以在这个变量中自定义实现 GATT 服务。

```
static const struct ble_gatt_svc_def gatt_svr_svcs[] = {
    {
        /* Service: Heart-rate */
        .type = BLE_GATT_SVC_TYPE_PRIMARY,
        .uuid = BLE_UUID16_DECLARE(GATT_HRS_UUID),
        .characteristics = (struct ble_gatt_chr_def[]) { {
            /* Characteristic: Heart-rate measurement */
            .uuid = BLE_UUID16_DECLARE(GATT_HRS_MEASUREMENT_UUID), /* 声明蓝牙 GATT 服务 */
            .access_cb = gatt_svr_chr_access_heart_rate,
            .val_handle = &hrs_hrm_handle,
            .flags = BLE_GATT_CHR_F_NOTIFY,
        }, {
            /* Characteristic: Body sensor location */
            .uuid = BLE_UUID16_DECLARE(GATT_HRS_BODY_SENSOR_LOC_UUID),
            .access_cb = gatt_svr_chr_access_heart_rate,
            .flags = BLE_GATT_CHR_F_READ,
        }, {
            0, /* No more characteristics in this service */
        }, }
    }.
    {
        /* Service: Device Information */
        .type = BLE_GATT_SVC_TYPE_PRIMARY,
        .uuid = BLE_UUID16_DECLARE(GATT_DEVICE_INFO_UUID),
        .characteristics = (struct ble_gatt_chr_def[]) { {
            /* Characteristic: * Manufacturer name */
            .uuid = BLE_UUID16_DECLARE(GATT_MANUFACTURER_NAME_UUID),
            .access_cb = gatt_svr_chr_access_device_info,
            .flags = BLE_GATT_CHR_F_READ,
        }, {
            /* Characteristic: Model number string */
            .uuid = BLE_UUID16_DECLARE(GATT_MODEL_NUMBER_UUID),
            .access_cb = gatt_svr_chr_access_device_info,
            .flags = BLE_GATT_CHR_F_READ,
        }, {
            0, /* No more characteristics in this service */
        }, }
    },
        {
            0, /* No more services */
        }.
};
```

对于心跳服务访问 gatt_svr_chr_access_heart_rate 这个函数,实现相对简单。我们可以参考 bleprph_enc 例程中的 gatt_svc_access 函数,,它对**特性的读,写,读描述符,写描述符**等等做 了不同的分类和实现:

(下页继续)

(续上页)

```
(续上页)
```

```
int rc;
switch (ctxt->op) {
case BLE_GATT_ACCESS_OP_READ_CHR:
    if (conn_handle != BLE_HS_CONN_HANDLE_NONE) {
        MODLOG_DFLT("Characteristic read; conn_handle=%d attr_handle=%d\n",
                    conn_handle, attr_handle);
    } else {
       MODLOG_DFLT("Characteristic read by NimBLE stack; attr_handle=%d\n",
                    attr_handle);
    }
    uuid = ctxt->chr->uuid;
    if (attr_handle == gatt_svr_chr_val_handle) {
        rc = os_mbuf_append(ctxt->om,
                            &gatt_svr_chr_val,
                            sizeof(gatt_svr_chr_val));
        return rc == 0 ? 0 : BLE_ATT_ERR_INSUFFICIENT_RES;
    }
    goto unknown;
case BLE_GATT_ACCESS_OP_WRITE_CHR:
    if (conn_handle != BLE_HS_CONN_HANDLE_NONE) {
        MODLOG_DFLT("Characteristic write; conn_handle=%d attr_handle=%d",
                    conn_handle, attr_handle);
    } else {
        MODLOG_DFLT("Characteristic write by NimBLE stack; attr_handle=%d",
                    attr_handle);
    }
    uuid = ctxt->chr->uuid;
    if (attr_handle == gatt_svr_chr_val_handle) {
       rc = gatt_svr_write(ctxt->om,
                            sizeof(gatt_svr_chr_val),
                            sizeof(gatt_svr_chr_val),
                            &gatt_svr_chr_val, NULL);
        ble_gatts_chr_updated(attr_handle);
        MODLOG_DFLT("Notification/Indication scheduled for "
                    "all subscribed peers.\n");
        return rc;
    }
    goto unknown;
case BLE_GATT_ACCESS_OP_READ_DSC:
    if (conn_handle != BLE_HS_CONN_HANDLE_NONE) {
        MODLOG_DFLT("Descriptor read; conn_handle=%d attr_handle=%d\n",
                    conn_handle, attr_handle);
    } else {
       MODLOG_DFLT("Descriptor read by NimBLE stack; attr_handle=%d\n",
                    attr_handle);
    }
    uuid = ctxt->dsc->uuid;
    if (ble_uuid_cmp(uuid, &gatt_svr_dsc_uuid.u) == 0) {
       rc = os_mbuf_append(ctxt->om,
                            &gatt_svr_dsc_val,
                            sizeof(gatt_svr_chr_val));
        return rc == 0 ? 0 : BLE_ATT_ERR_INSUFFICIENT_RES;
    }
    goto unknown;
case BLE_GATT_ACCESS_OP_WRITE_DSC:
    goto unknown;
```

(续上页)

```
default:
    goto unknown;
}
unknown:
    /* Unknown characteristic/descriptor;
    * The NimBLE host should not have called this function;
    */
    assert(0);
    return BLE_ATT_ERR_UNLIKELY;
}
```

我们可以参考这个函数对特性的读写做一些通用的实现。

2.3.4 GAP 事件处理 从上文我们可以知道, GAP 事件函数我们可以注册到广播或者扫描函数中, 我们 也可以对不同的事件进行分类处理, 例如连接, 断连, 配对事件, 订阅事件, 扫描收到的广播包等等:

支持的事件如下:

# define	BLE_GAP_EVENT_CONNECT	0
#define	BLE_GAP_EVENT_DISCONNECT	1
/* Reser	rved	2 */
#define	BLE_GAP_EVENT_CONN_UPDATE	3
#define	BLE_GAP_EVENT_CONN_UPDATE_REQ	4
#define	BLE_GAP_EVENT_L2CAP_UPDATE_REQ	5
# define	BLE_GAP_EVENT_TERM_FAILURE	6
#define	BLE_GAP_EVENT_DISC	7
#define	BLE_GAP_EVENT_DISC_COMPLETE	8
# define	BLE_GAP_EVENT_ADV_COMPLETE	9
# define	BLE_GAP_EVENT_ENC_CHANGE	10
#define	BLE_GAP_EVENT_PASSKEY_ACTION	11
#define	BLE_GAP_EVENT_NOTIFY_RX	12
# define	BLE_GAP_EVENT_NOTIFY_TX	13
# define	BLE_GAP_EVENT_SUBSCRIBE	14
# define	BLE_GAP_EVENT_MTU	15
# define	BLE_GAP_EVENT_IDENTITY_RESOLVED	16
# define	BLE_GAP_EVENT_REPEAT_PAIRING	17
# define	BLE_GAP_EVENT_PHY_UPDATE_COMPLETE	18
# define	BLE_GAP_EVENT_EXT_DISC	19
# define	BLE_GAP_EVENT_PERIODIC_SYNC	20
# define	BLE_GAP_EVENT_PERIODIC_REPORT	21
# define	BLE_GAP_EVENT_PERIODIC_SYNC_LOST	22
# define	BLE_GAP_EVENT_SCAN_REQ_RCVD	23
# define	BLE_GAP_EVENT_PERIODIC_TRANSFER	24
# define	BLE_GAP_EVENT_PATHLOSS_THRESHOLD	25
# define	BLE_GAP_EVENT_TRANSMIT_POWER	26

(续上页)

```
/* Connection failed; resume advertising */
            blehr_advertise();
            conn_handle = 0;
        }
        else {
          conn_handle = event->connect.conn_handle;
          #if LOW_POWER_TESET_CI_100MS // LOW_POWER_TESET_CI_1000MS // LOW_POWER_TESET_LATENCY_
→ 100MS // LOW_POWER_TESET_LATENCY_1000MS
            LowPower_Test_Timer();
          #endif
        }
        break;
    case BLE_GAP_EVENT_DISCONNECT:
        printf("disconnect; reason=0x%02x\n", (uint8_t)event->disconnect.reason);
        conn_handle = BLE_HS_CONN_HANDLE_NONE; /* reset conn_handle */
        /* Connection terminated; resume advertising */
        blehr_advertise();
        break;
    case BLE_GAP_EVENT_ADV_COMPLETE:
        printf("adv complete\n");
        blehr_advertise();
        break;
    case BLE_GAP_EVENT_SUBSCRIBE:
        printf("subscribe event; cur_notify=%d\n value handle; "
                          "val_handle=%d\n",
                    event->subscribe.cur_notify, hrs_hrm_handle);
        if (event->subscribe.attr_handle == hrs_hrm_handle) {
            notify_state = event->subscribe.cur_notify;
            blehr_tx_hrate_reset();
        } else if (event->subscribe.attr_handle != hrs_hrm_handle) {
            notify_state = event->subscribe.cur_notify;
            blehr_tx_hrate_stop();
        }
        break;
    case BLE_GAP_EVENT_MTU:
        printf("mtu update event; conn_handle=%d mtu=%d\n",
                    event->mtu.conn_handle,
                    event->mtu.value);
        break;
    }
    return 0;
}
```

```
以下为主机中的 gap 事件处理:
```

```
static int blecent_gap_event(struct ble_gap_event *event, void *arg)
{
    struct ble_gap_conn_desc desc;
    struct ble_hs_adv_fields fields;
    int rc;
    switch (event->type) {
```

```
(续上页)
```

```
case BLE_GAP_EVENT_DISC:
   rc = ble_hs_adv_parse_fields(&fields, event->disc.data,
                                 event->disc.length_data);
    if (rc != 0) {
       return 0;
    }
    /* An advertisment report was received during GAP discovery. */
    print_adv_fields(&fields);
    /* Try to connect to the advertiser if it looks interesting. */
    blecent_connect_if_interesting(&event->disc);
    return 0;
case BLE_GAP_EVENT_CONNECT:
    /* A new connection was established or a connection attempt failed. */
    if (event->connect.status == 0) {
        /* Connection successfully established. */
       printf("Connection established ");
       rc = ble_gap_conn_find(event->connect.conn_handle, &desc);
       assert(rc == 0);
       print_conn_desc(&desc);
       printf("\n");
        /* Remember peer. */
       rc = peer_add(event->connect.conn_handle);
       if (rc != 0) {
           printf("Failed to add peer; rc=%d\n", rc);
           return 0;
       }
        /* Perform service discovery. */
        rc = peer_disc_all(event->connect.conn_handle,
                           blecent_on_disc_complete, NULL);
        if (rc != 0) {
            printf("Failed to discover services; rc=%d\n", rc);
            return 0;
       }
    } else {
        /* Connection attempt failed; resume scanning. */
       printf("Error: Connection failed; status=%d\n",
                   event->connect.status);
        blecent_scan();
    }
   return 0;
case BLE_GAP_EVENT_DISCONNECT:
    /* Connection terminated. */
    printf("disconnect; reason=0x%02x\n", (uint8_t)event->disconnect.reason);
    print_conn_desc(&event->disconnect.conn);
   printf("\n");
    /* Forget about peer. */
    peer_delete(event->disconnect.conn.conn_handle);
    /* Resume scanning. */
    blecent_scan();
    return 0;
```

```
(续上页)
```

```
case BLE_GAP_EVENT_DISC_COMPLETE:
    printf("discovery complete; reason=%d\n",
                event->disc_complete.reason);
    return 0;
case BLE_GAP_EVENT_ENC_CHANGE:
    /* Encryption has been enabled or disabled for this connection. */
    printf("encryption change event; status=%d ",
                event->enc_change.status);
   rc = ble_gap_conn_find(event->enc_change.conn_handle, &desc);
    assert(rc == 0);
    print_conn_desc(&desc);
    return 0;
case BLE_GAP_EVENT_NOTIFY_RX:
    /* Peer sent us a notification or indication. */
    printf("received %s; conn_handle=%d attr_handle=%d "
                      "attr_len=%d\n",
                event->notify_rx.indication ?
                    "indication" :
                    "notification",
                event->notify_rx.conn_handle,
                event->notify_rx.attr_handle,
                OS_MBUF_PKTLEN(event->notify_rx.om));
    /* Attribute data is contained in event->notify_rx.attr_data. */
   return 0;
case BLE_GAP_EVENT_MTU:
    printf("mtu update event; conn_handle=%d cid=%d mtu=%d\n",
                event->mtu.conn_handle,
                event->mtu.channel_id,
                event->mtu.value);
    return 0;
case BLE_GAP_EVENT_REPEAT_PAIRING:
    /* We already have a bond with the peer, but it is attempting to
     * establish a new secure link. This app sacrifices security for
     * convenience: just throw away the old bond and accept the new link.
     */
    /* Delete the old bond. */
   rc = ble_gap_conn_find(event->repeat_pairing.conn_handle, &desc);
    assert(rc == 0);
    ble_store_util_delete_peer(&desc.peer_id_addr);
    /* Return BLE_GAP_REPEAT_PAIRING_RETRY to indicate that the host should
     * continue with the pairing operation.
     */
    return BLE_GAP_REPEAT_PAIRING_RETRY;
default:
   return 0;
}
```

4.3 NDK 低功耗开发指南

本文主要通过一些示例,介绍低功耗各个模式、使用的方法以及可能遇到的问题。

}

4.3.1 1 低功耗模式

低功耗模式介绍如下表所示:

模式名称	进入	唤醒	1.2V 区 时钟	时 钟	1.2V 供电
STA	$NBBep_M0de = 3,$ Buck_en_ctrl=0, Buck_bp_ctrl=0, Flashldo_bp_en_ctrl =0, Flashldo_lp_en_en_ctrl =0, WFI	P00, P01, P02, BOD/LVR (可选, 需 保证慢 时钟开 启), PIN RESET	全 部 关 闭	全部关闭	断电
STA:	$NBEP_Mode = 2, \ ldo_pwr_ctrl = 0, \ ldol_pwr_ctrl = 0/1, \ cpu pwr_ctrl = 0/1, \ sram0/1 pwr_ctrl = 0/1, \ ll_ram pwr_ctrl=0/1, \ phy_ram \ pwr _ctrl=0/1, \ Buck_en_ctrl=0, Buck_bp_ctrl=0, Flashldo_bp_en_ctrl = 0, Flashldo_lp_en_en_ctrl = 0, WFI$	所有 GPIO(边 沿去抖), SLPTMR, WDT, BOD/LVR (可选), PIN RE- SET	CLK32K, 其他全 部关闭	慢时钟	LPLDOL/H : LL_RAM (可选) , PHY_RAM/PHY_REGS (可选), SRAM0/1 (可选), decrypt_ram(可选, cpu 模 块不保电, 没办法做到只保 少部分寄存器)LPLDOL/H: asnactrl_l (rcc 的寄存器) GPIOWDTBOD, LVR
DEE SLEI	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	所有 GPIO, SLPTMR, WDT, TIMER0/1, BOD/LVR (可选), PIN RE- SET	CLK32K, 其他全 部关闭 /2,	慢时钟	LPLDOL/H:其他数字模块, LPLDOL/H:WakeupGPIO, WDT,Timer0/1/2,(需要测 试,确认如何安全使用)
SLEI	\mathbf{B} leep_mode = 0, WFI	所有外 设中断, BOD/LVR (可选), PIN RE- SET	CLK32K, CPU_CLF 关 闭, RCH、 XTH、 DPLL 根 据软件 配置选 择打开	慢时钟快时钟	HP_LDO 供电

4.3.2 2 开发流程

2.1 低功耗使用流程

2.1.1 Sleep 模式

- 进入流程:
- 1. 配置 sleep_mode 为 sleep 模式
- 2. 唤醒源配置
- 3. 设置 flash dp_en 为 0

- 4. 设置 CPU SLEEPDEEP 寄存器为 0;地址: 0xE000ED10
- 5. 考虑安全,建议进行一次手动 3V 同步操作
- 6. ____WFI();
- 退出流程:
- 1. 唤醒源产生中断;
- 2. 处理中断,清除中断源;
- 备注:
- 1. 支持 m0 调试模式,不支持 riscv 调试模式

2.1.2 Deepsleep 模式 进入流程:

1. 配置 sleep_mode 为 deepsleep 模式, 配置各电压域的 power switch, 配置 rcl_en_ctrl, xtl_pwr_ctrl, Buck 和 flashldo 的配置建议使用 driver 默认

2.

Power Switch	模式1(推荐)	模式 2	模式 3
lpldoh_en	1	1	0
lpldol_en	1	0	1
Ldo_pwr_ctrl	1	1	1
Ldol_pwr_ctrl	0	1	1
Peri_pwr_ctrl(cpu/ll_sram/phy_sram/sram0/s	ralm())am 可配)	1 (ram 可	1 (ram 可
		配)	配)
Lpldoh_iso_en	1 (配置 0 待测	0	0
	试)		

- 唤醒源配置:所有 GPIO,SLPTMR,WDT,TIMER0/1/2,BOD/LVR (可选),PIN RESET。 对于模式 1,如果 Lpldoh_iso_en 配置为 1,则不支持 TIMER0/1/2 唤醒;如果 Lpldoh_iso_en 配置为 0,则支持 TIMER0/1/2 唤醒和 PWM 输出(需要测试是否有漏电)。对于模式 2 或者模 式 3,上述唤醒源都可以唤醒系统。BOD,LVR 唤醒需要开启 32K 时钟。
- 4. 对于模式 1,如果 Lpldoh_iso_en 配置为 1,不支持 PWM 输出;如果 Lpldoh_iso_en 配置为 0,则支持 PWM 输出 (需要测试是否有漏电)。对于模式 2 或者模式 3, PWM 可以输出
- 5. Flash dp 设置为 1, 并退出 enhance 模式。配置合适的 dp, 和 rdp 时间
- 6. 建议 cpu 地址重映射功能开启,映射地址为 ram 保电区域,可加快唤醒后,程序执行速度
- 7. Dly_time2 需要根据测试结果重新配置,默认值比较大
- 8. 设置 CPU SLEEPDEEP 寄存器为 1; 地址: 0xE000ED10
- 9. Flash 控制器退出增强型模式;
- 10. 考虑安全, 建议进行一次手动 3V 同步操作
- 11. _WFI();

退出流程:

- 1. 唤醒源唤醒,产生 lp 中断或者唤醒源相对应的中断
- 2. 清除相应 flag

备注:

- 1. 支持 m0 调试模式 (低功耗期间会丢失), 不支持 riscv 调试模式
- 2. gpio 唤醒电平,至少需要保持一个完整的 32K 时钟周期。如果需要读取的 gpio 的中断,需要 7 个 32K 时钟周期 (需要 dly2 的延时决定);如果 32K 时钟关闭,则唤醒需要的时间更久,和 32K 时 钟的启动时间相关

2.1.3 Standby_m1 模式 进入流程:

1. 配置 sleep_mode 为 standby_m1 模式, 配置各电压域的 power switch, 配置 rcl_en_ctrl, xtl_pwr_ctrl, Buck 和 flashldo 的配置建议使用 driver 默认

0		
4	•	

	模式 1 (推荐, 需测 试)	模式 2	模式 3
lpldoh_en	1	1	0
lpldol_en	1	0	1
Ldo_pwr_ctrl	0	0	0
Ldol_pwr_ctrl	0	1	1
Peri_pwr_ctrl(cpu/ll_sram/phy_sram/sram0/som0/som0/som0/som0/som0/som0/som0/so	m1)(可配)	1(可配)	1(可配)
Lpldoh_iso_en	1	1	1

3. 唤醒源配置:所有 GPIO, SLPTMR, WDT, BOD/LVR (可选), PIN RESET。BOD, LVR 唤 醒需要开启 32K 时钟。

4. flash 如果使用 4 线模式,建议开启 dp 模式, flash 两线切换四线的时间特别长,一般会有 8ms; 如果 flash 使用 2 线模式,不建议开启 dp 模式, flash 直接掉电处理。

- 5. 建议 cpu 地址重映射功能开启,映射地址为 ram 保电区域,可加快唤醒后,程序执行速度
- 6. 根据需求, 决定是否开启 cpu 保电功能, 寄存器 LP_FL_CTRL[4]。可硬件恢复现场, 代码实现 有特定需求, 参见说明部分
- 7. Dly_time2 需要根据测试结果重新配置,默认值比较大
- 8. 设置 CPU SLEEPDEEP 寄存器为 1;地址: 0xE000ED10
- 9. 考虑安全, 建议进行一次手动 3V 同步操作
- 10. _WFI();

退出流程:

- 1. 唤醒源唤醒,产生 lp 中断以及唤醒源相对应的中断
- 2. 清除相应 flag

备注:

- 1. 不支持 m0 和 riscv 调试模式
- 2. 支持 m0 的 cpu retention 功能 (现场恢复), 不支持 riscv 的 cpu retention 功能
- 3. gpio 唤醒电平,至少需要保持一个完整的 32K 时钟周期。如果需要读取的 gpio 的中断,需要 7 个 32K 时钟周期 (需要 dly2 的延时决定);如果 32K 时钟关闭,则唤醒需要的时间更久,和 32K 时 钟的启动时间相关

2.1.4 Standby_m0 模式 进入流程:

- 1. 配置 sleep_mode 为 standby_m0 模式, 配置 rcl_en_ctrl, xtl_pwr_ctrl
- 2. 唤醒源配置:所有 P00, P01, P02, BOD/LVR (可选), PIN RESET。
- 3. Flash dp 设置为 0
- 4. Dly_time1 根据需要决定是否配置,如果不在意 m0 的唤醒时间不建议去修改。此处的时间测试遍 历会比较多,设置的值不好控制
- 5. 设置 CPU SLEEPDEEP 寄存器为 1; 地址: 0xE000ED10
- 6. 考虑安全, 建议进行一次手动 3V 同步操作
- 7. _WFI();

退出流程:

- 1. 唤醒源唤醒,产生 lp 中断以及唤醒源相对应的中断
- 2. 清除相应 flag

2.2 参考相关例程

当前 SDK 中提供了一些低功耗相关的例程,涵盖了章节 1 所述的所有低功耗模式等。例程位置: 03_MCU\mcu_samples\LP。

2.3 Standby_m1 休眠唤醒

以 standby m1 模式, cpu retention and cpu continue run 模式为基础介绍各个时间阶段 mcu 的动作。

阶段	说明	时间	备注
		(us)	
进入休眠	从软件发送休眠指令至硬件完全休眠 的时间	236	
硬件唤醒启动	唤醒源触发后硬件完全启动的时间	278	
Standby M1 re-	continue run,唤醒至 rx ready 时间	465	此模式下软件初始化和 RF 初
tention 模式			始化步骤 可以省略
TX/RX(max	收发最大 payload 的时间,根据传输	1888	此处按最大数据计算
59B)	速率与字节数计算得出		
总计	休眠唤醒至 tx 完成/rx 完成的时间	2867	

休眠时间

唤醒时间

软件运行至 RF ready 时间

RF 接收 32Byte 时间

4.3.3 3 **低功耗注意事项**

- 1. 如果 flash 运行在 4 线 enhance 模式,进入功耗前需要退出 enhance 模式。
- 2. 低功耗模式下供电分两部分 LPLDOL 和 LPLDOH,其中 LPLDOL 给 sram 供电,电压范围从 0.4~0.9v (未校准芯片有差异),LPLDOH 给 always on 区域部分供电,供电范围 0.5~1.2v (未校准 芯片有差异),通常在进入低功耗在保证唤醒正常情况下尽量降低两个电压,常温下 LPLDOL/H 可设置未 0/1。
- 3. 为防止 LPLDOH 在电源抖动时出现不能唤醒的情况,增加了一个 LPLDOH_VREF_TRIM_AON (LP_LPLDO[23:21]) 控制位,设置值的作用是弥补电源抖动,稳定电压,同时设置完成此值(例 如设置为 2, LPLDOH 电压 0.7v) 后再想拉低 LPLDOH 至 0.6v 是不能完成的,此属于正常现象。
- 4. DeepSleep 模式下外设 timer0/1/2 作为唤醒以及 PWM 在低功耗下输出需要将 deepsleep 低功耗 模式设置为模式 2,即 dp_mode= LP_DEEPSLEEP_MODE2.
- 5. Standby M1 cpu retention 模式唤醒后外设部分及 RF MAC 层寄存器需要重新初始化, PHY、保 电的 sram、时钟等不需要重新初始化

4.4 NDK RAM 使用情况分析以及优化指南

4.4.1 1 如何查看 KEIL 的 RAM 和 Flash 使用情况

因为当前工程中很多和 BLE 时间处理相关的函数为了提升处理速度使用了 RAM CODE,所以导致部分 CODE 会占用 RAM 空间,所以查看工程的实际占用空间要从 RAM 和 Flash 空间进行查看。

首先双击 keil 项目打开 map 文件

-				· · ·
.bss	0x20007b6c	Section	124	event_manager.o(.bss)
.bss	0x20007be8	Section	260	<pre>hci_transport.o(.bss)</pre>
.bss	0x20007cec	Section	40	llhwc_cmn.o(.bss)
.bss	0x20007d14	Section	44	<pre>mem_manager.o(.bss)</pre>
.bss	0x20007d40	Section	180	conn_mngr.o(.bss)
channel_statistics	0x20007d40	Data	148	conn_mngr.o(.bss)
.bss	0x20007df4	Section	56	<pre>multi_role_greedy.o(.bss)</pre>
g_multi_ctx	0x20007df4	Data	56	<pre>multi_role_greedy.o(.bss)</pre>
.bss	0x20007e2c	Section	200	non_conn_mngr.o(.bss)
.bss	0x20007ef4	Section	10	<pre>state mngr.o(.bss)</pre>
g states arr	0x20007ef4	Data	10	<pre>state mngr.o(.bss)</pre>
.bss	0x20007f00	Section	48	os wrapper.o(.bss)
HEAP	0x20007f30	Section	0	<pre>startup panseries.o(HEAP)</pre>
STACK	0x20007f30	Section	2048	startup panseries.o(STACK)

图 7: 通过 STACK 查看 RAM 占用

1.1 如何查看 RAM 空间:

因为 STACK 占用 RAM 边界位置,我们可以通过 STACK 占用可以知道 RAM 最多占用 0x20007f30+0x800(2048) = 0x20008730 的 RAM,因为 RAM 地址默认是 0x20000000 起始的,所以 我们知道 RAM 占用了 0x8730 (34608) 字节的 RAM。

1.2 如何查看 Flash 空间

从 RAM 空间往上查找 flash 边界位置, 0x20000000 前面的即是 flash 最大地址

.constdata	0x0001c79b	Section	1	llhwc_phy_sequences.o(.constdata)
.constdata	0x0001c79c	Section	1	<pre>llhwc_phy_sequences.o(.constdata)</pre>
.conststring	0x0001c7a0	Section	7	<pre>main.o(.conststring)</pre>
.conststring	0x0001c7a8	Section	34	<pre>gatt_svr.o(.conststring)</pre>
.ramfunc	0x20000000	Section	0	nimble_glue.o(.ramfunc)
tagsym\$\$noinline	0x20000001	Number	0	nimble_glue.o(.ramfunc)
tagsym\$\$noinline	0x20000011	Number	0	nimble_glue.o(.ramfunc)
tagsym\$\$noinline	0x20000019	Number	0	<pre>nimble_glue.o(.ramfunc)</pre>
.ramfunc	0x20000028	Section	0	<pre>pan_ble_stack.o(.ramfunc)</pre>

图 8: 查看 flash 边界

通过 map 文件找到边界地址 0x1c7a8+0x22(34) = 0x1c7ca(116682) bytes。

4.4.2 2关于堆空间的使用说明

2.1 蓝牙 controller 的堆

蓝牙 controller 的堆默认是用于 controller 的广播,连接等各种数据包动态分配使用的。而且是从 host 定义来进行分配的,但是不同的参数可能导致堆的需求空间不一致。

我们可以通过打开 app_config.h 或者 app_config_spark.h 中的 BT controller Memory Pool usage print 选项 (对应的宏 CONFIG_CNTRL_MEM_POOL_PRINT) 显示的输出底层 controller 所需要 的内存。

正常分配时如下:

[19:32:53.628] 收 ← LL Controller Version:bd5923c

```
[19:32:53.665]收 ← BT controller memory pool used: 400 bytes, remain bytes: 8496, total:8896
BT controller memory pool used: 764 bytes, remain bytes: 8132, total:8896
BT controller memory pool used: 3784 bytes, remain bytes: 5112, total:8896
BT controller memory pool used: 4840 bytes, remain bytes: 4056, total:8896
BT controller memory pool used: 5164 bytes, remain bytes: 3732, total:8896
BT controller memory pool used: 6124 bytes, remain bytes: 2772, total:8896
BT controller memory pool used: 8896 bytes, remain bytes: 0, total:8896
app started
```

上面的 log 显示正常分配的对内存为 8896bytes, 所以我们可以打开 nimble_glue.c 或者 nimble_glue_spark.c 找到堆分配的宏 PAN_BLE_CTLR_BUFFER_ALLOC 将其的值修改为 8896。

(8896) (((PAN_BLE_CTLR_BUFFER_ALLOC) + 3)& (~((uint32_

static uint32_t mem_buffer[PAN_BLE_CTLR_BUFFER_SIZE/4];
static uint32_t mem_pos;

我们也可以将堆修改为异常很小的值,比如此处设置为4000,看下实际输出:

[19:38:01.115] 收 ← LL Controller Version:bd5923c

[19:38:01.151] 收 ← BT controller memory pool used: 400 bytes, remain bytes: 3600, total:4000 BT controller memory pool used: 764 bytes, remain bytes: 3236, total:4000 BT controller memory pool used: 3784 bytes, remain bytes: 216, total:4000 BT controller allocating 1056 bytes failed

此时分配失败后会触发断言在初始化的地方卡住。 我们可以一开始设置比较大的堆值,然后再调整为合适的值即可。

2.2 App 以及 host 使用的堆 (应用层堆全局使用 freertos 的堆)

为了方便资源管理,我们 app 和 host 全局使用 freertos 的堆,相应堆的分配函数 pvPortMalloc。 当前 SDK 哪些资源默认使用了 freertos 的堆呢?

- app 中显式使用 pvPortMalloc 的地方
- freertos task 的栈
- 创建 freertos 定时器时的栈 (定时器也是 task)、
- freertos 创建信号量等

2.3 如何查看 freertos heap 的使用

我们可以通过打开 app_config.h 或者 app_config_spark.h 中的 FreeRTOS Heap Usage Print 选项 (对应的宏 CONFIG_FREERTOS_HEAP_PRINT) 显示的输出底层 controller 所需要的内存。

freertos heap 的宏是 FreeRTOSConfig.h 中的 configTOTAL_HEAP_SIZE, 我们可以通过修改 configTOTAL_HEAP_SIZE 的值来改变全局堆的大小。

启动时会输出如下:

[19:47:57.875] 收 ← total allocated bytes:216,remain:5920 total allocated bytes:304,remain:5832 total allocated bytes:392,remain:5744 total allocated bytes:480,remain:5656 total allocated bytes:536,remain:5600 total allocated bytes:704,remain:5432 total allocated bytes:792,remain:5344 LL Controller Version:bd5923c [19:47:57.918] 收 ← app started total allocated bytes:848,remain:5288 total allocated bytes:2864,remain:3272 total allocated bytes:2960,remain:3176

total allocated bytes:2960,remain:3176 total allocated bytes:3232,remain:2904

(续上页)

```
total allocated bytes:3328,remain:2808
total allocated bytes:4368,remain:1768
total allocated bytes:4464,remain:1672
total allocated bytes:4520,remain:1616
total allocated bytes:4752,remain:1384
total allocated bytes:4706,remain:1328
```

我们故意将 configTOTAL_HEAP_SIZE 设置为一个很小的值,分配失败是会有如下显示:

[19:50:28.736] 收 ← total allocated bytes:216,remain:2848 total allocated bytes:304,remain:2760 total allocated bytes:392,remain:2672 total allocated bytes:480,remain:2584 total allocated bytes:536,remain:2528 total allocated bytes:704,remain:2360 total allocated bytes:792,remain:2272 LL Controller Version:bd5923c

[19:50:28.778] 收 ← app started total allocated bytes:848,remain:2216 total allocated bytes:2864,remain:200 total allocated bytes:2960,remain:104 pvPortMalloc failed allocate 272 bytes failed,remain:104

另外我们也要注意一点,堆定义的空间可以适当多分配一点,有些堆的分配是在运行时才会去调用。

4.5 NDK Mcu Boot

4.5.1 1. 背景介绍

BootLoader 是一个硬件系统的引导代码,可以引导系统软件的升级,由于实际产品中 BootLoader 是不可以或者很难更新的,所有确保 BootLoader 的稳定性和鲁棒性是对一个系统最基本的保证。原则上需要保证 BootLoader 的功能尽量简单可靠,本文主要介绍 ndk mcu 的开发指南,将会从 4 个方面进行阐述,分别是 flash 区域的划分,BootLoader 模式,升级的流程和策略

4.5.2 2. flash **区域的划分**

Area	size and range
User flash	28K 0x78000->0x7F000
Backup	220K 0x41000->0x78000
Image	220K 0xA000->0x41000
BootLoader	40K 0x00000->0xA000

Image 为应用程序代码,目前 hr_ota 工程代码大小是 113K,那么用户逻辑代码可以使用 100K。

Backup 为升级代码的备份区,确保升级固件的完整性和安全性过后,再搬运到 Image 区域。

User Flash 区域,为用户存储数据的区域。

注意: User Flash 的大小是可以有限制的**增大的**,这个特性和 BootLoader 的模式也有很大的关系,详 情参考下面 BootLoader 的模式

4.5.3 2.1 BootLoader mode

为了更好适配不同的程序和方案, ndk 的 BootLoader 和应用层配合实现了 3 种 ota 的模式, 依次是 bare mode, ota in BootLoader, ota in app

2.1.1 Bare mode

bare mode 以为应用程序是裸机程序,适用于开发阶段的调试,或者特使需求的应用,如下图使能 CONFIG_BARE_IMAGE 即可完成工程的选择。

2.1.2 ota in BootLoader

该模式表示 ota 的流程和策略完全在 BootLoader 的程序执行的,这意味着 flash backup 区域可以重新 分配给 flash image **和** user flash 区域。

使用该功能的步骤

- 1. 编译下载 BootLoader 的程序,程序位置为 ndk\pan107x_mcu_boot 或者 ndk\pan108x_mcu_boot, 选择那个 BootLoader 取决于你的芯片版本。
- 2. 修改应用程序的配置(1) 使能 CONFIG_OTA_IN_BOOTLOADER, 如下图所示(2) 修改 image flash 区域的大小或者 user flash 区域的大小 (optional), 如下图所示

注意:

CONFIG_IMAGE_EXTENDED_SIZE 和 CONFIG_USER_FLASH_EXTENDED_SIZE 扩展 Image 和 User flash 区域 的大小,上图配置可以得到下图的公式

```
image_size = SIZE_FIXED_APP_IMAGE + CONFIG_IMAGE_EXTENDED_SIZE
image_size = 220 + 120 = 340 octets
```

user_flash_size = SIZE_FIXED_USER_FLASH + CONFIG_USER_FLASH_EXTENDED_SIZE
user_flash_size = 28 + 100 = 128 octets

2.1.2.1 支持的升级的方法

- 1. USB dfu 模式: 107 芯片支持, 108 芯片待支持
- 2. UART dfu 模式: 107 和 108 芯片均支持
- 3. PRF OTA 模式: 待支持

2.1.3ota in APP

默认 OTA 的升级流程是在 APP 完成的,相比于 ota in BootLoader 他主要兼容 smp 的蓝牙升级,同时意味着付出了 image flash size <= 220K 的代价。

使用该功能的步骤

- 1. 编译下载 BootLoader 的程序,程序位置为 ndk\pan107x_mcu_boot 或者 ndk\pan108x_mcu_boot, 选择那个 BootLoader 取决于你的芯片版本。
- 2. 修改应用程序的配置(1)禁止 CONFIG_OTA_IN_BOOTLOADER 和 CONFIG_BARE_IMAGE, 如下图所示(2) 修改 user flash 区域的大小 (optional), 如下图所示

注意:此时依然可可以通过 CONFIG_USER_FLASH_EXTENDED_SIZE 扩张 user flash 区域,如果这样做意 味着 Image 区域也变相的减少了。

2.1.2.1 支持的升级的方法 蓝牙 smp 升级,需要应用层支持,详情参考"'bleprph_hr_ota'的 demo

4.5.4 3 BootLoader 升级流程和策略

BootLoader 启动的时候,会等待很多个信号,然后依次 trigger 信号的操作。这儿我们抽象成 QT 编程 中描述的信号和槽的概念,代码工程 ndk\pan107x_mcu_boot 或者 ndk\pan108x_mcu_boot。

```
signal:
bool sig_key_push_down(void);
bool sig_special_ram_value_detected(void);
bool sig_ota_start_received(void);
bool sig_back_up_is_completed_image(void);
slots:
void on_usb_dfu_enter(void);
```

```
void on_usb_dul_enter(void);
void on_prf_ota_enter(void);
void on_uart_dfu_enter(void);
void on_image_load_enter(void);
```

连接信号和槽

```
typedef void (slot_handler_t)(void);
typedef void (signal_handler_t)(void);
```

void connect(uint8_t priority, signal_handler_t signal, slot_handler_t slot);

事件检测流程

```
/* when checking backup image is valid, the on_image_load_enter function will be handled */
ss_connect(0, sig_back_up_is_completed_image, on_image_load_enter);
```

(续上页)

```
#if BOOT FROM UART
/* when detecting key1 down, the on_uart_dfu_enter function will be handled */
ss_connect(1, sig_key1_push_down, on_uart_dfu_enter);
#endif
#if BOOT_FROM_USB
/* when dectecting key2 down, the on_usb_dfu_enter function will be handled */
ss_connect(2, sig_key2_push_down, on_usb_dfu_enter);
#endif
#if BOOT FROM PRF OTA
/* when receive a ota start packet, the on_prf_ota_enter function will be handled */
ss_connect(3, sig_ota_start_received, on_prf_ota_enter);
#endif
/* handle all of events related signal fuction*/
ss_events_handle();
/* recovery gpio status that you used to trigger signal */
sig_hardware_recovery();
```

事件检测是分为优先级的,这儿巧妙通过数组索引的流程实现了这个功能。之所以要分优先级,是因为 流程的需要,例如备份区已经有了完整的代码,可能需要提前处理一下,处理完成过后也许就不需要升 级了。

3.1 USB dfu 模式

```
void on_usb_dfu_enter(void);
```

进入 dfu 过后, 107 写寄存器进入 ROM 模式,108 需要自己实现

3.2 UART dfu 模式

void on_uart_dfu_enter(void);

进入 dfu 过后, 会采用 xmodem 协议进行 OTA 升级

3.3 PRF OTA 模式

```
void on_prf_ota_enter(void);
```

待 ota 设备复位进入 ota 状态, firmware 通过 2.4g dongle 发送给待 ota 设备

3.4 Backup dfu 模式

检测 backup 区域固件的完整性, 决定是否搬移到 image

4.5.5 4. uart **升级详解**

升级的固件需要签名校验,默认 keil 编译的时候,在工程的同级目录 Images 下会自动生成 ndk_app. signed.bin。使用该功能依赖系统安装了 python 和 python 的库文件 numpy。如果系统已经安装 python,请执行下面的命令安装 numpy

python -m pip install numpy

> workspace > Zephyr > nimble > pan107x_samples > bluetooth > bleprph_hr > keil					
	修改日期	类型	大小		
🖌 📙 Images	2023/12/4 19:05	文件夹			
Listings	2023/12/15 9:34	文件夹			
Objects	2024/3/29 16:27	文件夹			
bleprph_hr.uvguix.xuchao	2024/3/29 16:27	XUCHAO 文件	181 KB		
🖈 👩 bleprph_hr.uvoptx	2024/3/29 16:27	UVOPTX 文件	50 KB		
🖈 🛛 🐻 bleprph_hr.uvprojx	2024/3/29 16:27	礦ision5 Project	38 KB		
EventRecorderStub.scvd	2023/11/30 17:20	SCVD 文件	1 KB		
JLinkLog.txt	2024/3/29 11:27	文本文档	346 KB		
🚮 JLinkSettings.ini	2024/3/19 18:28	配置设置	1 KB		
🔊 JLinkSettings.JLinkScript	2023/12/18 16:19	JLINKSCRIPT 文件	6 KB		
🔊 post.bat	2023/12/4 19:04	Windows 批处理	1 KB		
🧬 project.sct	2024/3/29 15:20	Windows Script	1 KB		

4.1 检测并进入 uart 升级模式

- 1. 使能 uart dfu 功能, 通过 BOOT_FROM_UART 宏进行使能
- 2. 编写 uart dfu 进入的 signal 函数,并将信号和槽连接,槽属于升级流程 BootLoader 已经支持,用 户不需要修改。用户可以修改 signal 函数。默认如下

```
#if BOOT_FROM_UART
/* when detecting key1 down, the on_uart_dfu_enter function will be handled */
ss_connect(1, sig_key1_push_down, on_uart_dfu_enter);
#endif
/* user can implement a custom signal fucntion */
bool sig_key1_push_down(void)
{
        GPI0_SetMode(P2, BIT0, GPI0_MODE_INPUT);
        GPIO_EnablePullupPath(P2, BIT0);
        for (uint16_t i = 0; i < 1000; i++) {</pre>
                if (P20 == 1) {
                        return false;
                }
        }
        return true;
}
```

3. 下载 BootLoader 和应用程序,应用层程序需要配置 OTA_in_Bootloader 的模式

4.2 操作流程

1、烧录 boot, 在 boot_config.c 里面配置

#define BOOT_FROM_UART 1

- 2、当前工程比如是 peripheral_hr 的工程, 需要使用 uart 升级到需要的工程, 比如 ble_central
- 3、使用工具 SecureCRT 进行升级
- 4、打开工具 SecureCRT 连接设备串口, 串口波特率 921600

5、把板卡上 P20 接 GND,复位板卡,查看工具 SecureCRT 上 log 打印,一直输出 CCCCCCCCCC

图 9: PAN1070 UART DFU 进入升级模式

6、在工具 SecureCRT 的"传输"界面选择"发送 Xmodem(N)",选择待升级工程的文件,位于 image 路径下: ndk_app.signed.bin,文件开始传输

图 10: PAN1070 UART DFU 传输文件

7、拔掉 GND,复位设备,查看串口 log,已经打印升级后的程序 log;

4.5.6 5 USB dfu 升级详解

升级的固件需要签名校验,默认 keil 编译的时候,在工程的同级目录 Images 下会自动生成 ndk_app. signed.bin。使用该功能依赖系统安装了 python 和 python 的库文件 numpy。如果系统已经安装 python,请执行下面的命令安装 numpy

python -m pip install numpy

> workspace > Zephyr > nimble > pan107x_samples > bluetooth > bleprph_hr > keil					
	修改日期	类型	大小		
🖌 Images	2023/12/4 19:05	文件夹			
Listings	2023/12/15 9:34	文件夹			
Objects	2024/3/29 16:27	文件夹			
bleprph_hr.uvguix.xuchao	2024/3/29 16:27	XUCHAO 文件	181 KB		
🖈 👩 bleprph_hr.uvoptx	2024/3/29 16:27	UVOPTX 文件	50 KB		
🕐 🛛 🐻 bleprph_hr.uvprojx	2024/3/29 16:27	礦ision5 Project	38 KB		
EventRecorderStub.scvd	2023/11/30 17:20	SCVD 文件	1 KB		
JLinkLog.txt	2024/3/29 11:27	文本文档	346 KB		
JLinkSettings.ini	2024/3/19 18:28	配置设置	1 KB		
🔊 JLinkSettings.JLinkScript	2023/12/18 16:19	JLINKSCRIPT 文件	6 KB		
🔊 post.bat	2023/12/4 19:04	Windows 批处理	1 KB		
🥏 project.sct	2024/3/29 15:20	Windows Script	1 KB		

5.1 检测并进入 usb 升级模式

1. 使能 usb dfu 功能, 通过 BOOT_FROM_USB 宏进行使能

2. 编写 uart dfu 进入的 signal 函数,并将信号和槽连接,槽属于升级流程 BootLoader 已经支持,用 户不需要修改。用户可以修改 signal 函数。默认如下

```
#if BOOT_FROM_USB
/* when dectecting key2 down, the on_usb_dfu_enter function will be handled */
ss_connect(2, sig_key2_push_down, on_usb_dfu_enter);
#endif
/* user can implement a custom signal fucntion */
bool sig_key2_push_down(void)
{
    GPI0_SetMode(P2, BIT1, GPI0_MODE_INPUT);
    GPI0_EnablePullupPath(P2, BIT1);
    for (uint16_t i = 0; i < 1000; i++) {
        if (P21 == 1) {
            return false;
        }
    }
    return true;
}</pre>
```

3. 下载 BootLoader 和应用程序,应用层程序需要配置 OTA_in_Bootloader 的模式

5.2 操作流程

1、烧录 boot, 在 boot_config.c 里面配置

```
#define BOOT_FROM_USB
```

2、当前工程比如是 peripheral_hr 的工程,需要使用 USB 升级到需要的工程,比如 ble_central

3、使用 SDK 的 05_TOOLS 里面的工具箱工具 pan107xToolBox V0.0.00x 进行升级

1

```
4、打开工具 pan107xToolBox V0.0.00x,选择"显示">"DFU",连接设备 USB 口
```

5、把板卡上 P21 接 GND,复位设备,查看工具 pan107xToolBox V0.0.00x 识别 USB 口

🖉 pan107xToolBox V0.0.003		-		×
文件 显示 帮助				
设备设置				
芯片 USB 设备 (标准系统设备) Panchip USB DFU(c35569-0-0000)				\sim
程序设置				
程序区大小 512K (Flash: 508K) > 请按照芯片程序区实际大小:	选择			
地址 大小 CRC	路径		添加程	序
			编辑程	之
			删除程	序
下# 0 4公开		TT #4 T	- 4D	
		луа г	- 1 X,	
				0%
就绪!				

图 11: PAN1070 USB DFU 识别 usb 口

6、在工具程序设置那里选择"添加程序">"加载程序",选择待升级工程的文件,位于 image 路径下:ndk_app.signed.bin,注意地址需要从 0x41000 开始

7、程序加载好之后,点击"开始下载"即可

Pap107xToolBox V0.0.003				
ma particitation voloidos				- 🗆 ×
文件 显示 帮助				
设备设置				
芯片 USB 设备 (标准系统设备)	Panchip USB DFU(c35569-0-0000)			~
程序设置				
程序区大小 512K (Flash: 508K	→ 请按照芯片程序区实际大小	法择		
	() · · · · · · · · · · · · · · · · · · ·	nh /7		
地址 大小	CRC	踦 1全		添加程序
1 0x041000 0x01E1C0	0xF199656C D:			编辑程序
				删除程序
		-Deel -	_	and the methods
下载&验证 ~		成切!		▶廾始卜��
4. ドキメインカ				^
	0x01E1C0			^
	0x01E1C0			^
	0x01E1C0			^
	0x01E1C0 0x01E1C0			Ŷ
	0x01E1C0 0x01E1C0			^
	0x01E1C0 0x01E1C0			^
	0x01E1C0 0x01E1C0			
	0x01E1C0 0x01E1C0			
	0x01E1C0 0x01E1C0			100%
	0x01E1C0 0x01E1C0			v 100%

图 12: PAN1070 USB DFU 升级成功

8、拔掉 GND 线,复位设备,查看串口 log,已经打印升级后的程序 log

4.5.7 6 PRF ota **升级详解**

1、打开工具 Panchip 2.4G OTA V0.0.002.exe,选择 2.4g dongle 对应的串口,具体设置如下图所示:

2、上位机的使用说明参考上位机的帮助文档。

note: 多设备升级不进行校验,不能确保每个设备都能升级成功。有些设备如果升级不成功需要重新升级。

4.6 NDK **常见问题**(FAQs)

4.6.1 Q1: 为什么我使用 JLink (SWD) 烧录一个工程后,无法(或很难)再次烧录?

正常来说,如果 JLink 接线没问题的话,您是可以反复烧录 App 工程的,若您发现在空板上使用 JLink 烧录 App 工程很容易成功,但再次烧录则不容易成功,则有可能是以下两个原因:

- 1. 您在 App 代码的初始化流程中修改了 P00/P01 引脚的功能,将其由默认的 SWD 功能切换为其他 功能 (如 GPIO),那么当试图使用 JLink 进行烧录的时候,SWD 通信将无法正常进行
- 2. 您的 App 工程会频繁地或长期地进入芯片的 DeepSleep 或 Standby 低功耗流程,在这两种低功耗 模式下,SWD 通信将无法正常进行

若遇到上述情况,您可以尝试将 JLink 的 RESET 引脚接到 SoC 的 RESET 引脚上,然后再进行烧录,很多时候可以解决问题。若此方法仍然无法成功,那么您可以尝试以下两种方法:

- 1. 使用 Panchip 量产烧录工具 PANLINK,将芯片 Flash 全部擦除
- 执行 JLink 脚本 ForceEraseVectorTable_PAN107x.bat (位于: <pan1070-ndk>\05_T00LS\调试工 具目录下),此脚本会尝试将 Flash 上的启动代码擦掉,若成功,后续即可正常使用 JLink 重新烧 录

PAN1070 NDK 开发套件使用手册, 发布 0.5.0

🛣 Panchip 2.4G OTA V0.0.002	-		\times
文件 显示 帮助			
串口设置			
串口号 COM33 #USB-SERIAL CH343 (COM33)	~ 波特率	921600	\sim
程序设置			
加载程序 C:\Users\panchip\Desktop\read_raw.bin	扇区大小	4 KB	\sim
│程序大小: 0x7F000(508 KB) │扇区对齐大小: 0x7F000(508 KB) │扇区数量: 127 │			
RF参数设置			
发射功率(dbm) 7 v 频率(MHz) 2410 v 地址(Hex) 71 76 41 29			
	1444は絵料に有土小の()	100	
● 后初注接 [1] 里的里	开级传输致活也入小(Bytes)	128	~
▶ 开始扫描 单设备 ∨ 每传输扇区数据等待时间(ms) 50	扫描设备超时时间(s)	100	
	▶ 开外	始升级	
清除日志 ☑ 日志保仔到又件 D:\git_new\pn108\zephyr_lts2\dev_tools\OTA上具\Panchip 2.4G OTA\log			
			00/
			070

图 13: PAN1070 PRF OTA 上位机

注:使用上述两种方法擦除 Flash 时, SoC 的 RESET 引脚是一定要连接上 PANLINK/JLink 的

Chapter 5

量产测试

5.1 量产烧录

5.1.1 1. 芯片硬件系统说明

如果芯片按照我司提供的 PAN107x / PAN101x **硬件参考设计**设计的模块,烧录连接如表 1-1、表 1-2 所示。

J-Flash	连接	PAN107× / PAN101× 芯片模块
VTref 3.3V	<>	VBAT
GND	<>	GND
SWDIO	<>	P01
SWDCLK	<>	P00

PAN-LINK2.0	连接	PAN107× / PAN101× 芯片模块
VDD	<>	VBAT
GND	<>	GND
A2	<>	RST
A3	<>	P01
A4	<>	P00

如果需要烧录裸芯片,没有任何外围器件的 PAN107x / PAN101x 芯片烧录连接如表 1-3、表 1-4 所示。

J-Flash	连接	PAN107x / PAN101x 裸芯片
VTref 3.3V	<>	VCC_RF
GND	<>	GND(注:QFN32: 33 号引脚 (ePAD))
SWDIO	<>	P01
SWDCLK	<>	P00

PAN-LINK2.0	连接	PAN107× / PAN101× 裸芯片
VDD	<>	VCC_RF
GND	<>	GND(注:QFN32: 33 号引脚 (ePAD))
A2	<>	RST
A3	<>	P01
A4	<>	P00

5.1.2 2. 量产烧录工具

为配合 PAN-LINK2.0 烧录 PAN107x / PAN101x 芯片程序工具。 下载

2.1. 硬件准备

预先将 PAN-LINK2.0 通过 MiniUSB 线连接到 PC 电脑。

图 1: 图 2-1-1 PAN-LINK2.0 烧录器

图 2:图 2-1-2 MiniUSB 连接线

如果 PAN-LINK2.0 固件程序不支持 PAN107x 芯片烧录,则需要根据提示自动更新升级。 或按照帮助文档方法更新 PAN-LINK2.0 固件程序。

2.1.1.PAN107x / PAN101x 芯片烧录接线 注: PAN-LINK2.0 接口的 VCC 与 VIO 通过跳线帽短接。

PAN-LINK2.0 接口脚	连接	PAN107x / PAN101x 芯片脚
VDD	<>	VDD
GND	<>	GND
A1	<>	RST
A3	<>	P01
A4	<>	P00

2.2. 工具界面

an I Day download tool V X.X.XXX	-	×
文件 芯片 连接 帮助		
下载项目配置		
下载程序配置		
V 😰 [PAN10xx Project]		
✓ 12 下數理序配置 (CRC: 0×0000000)		
> 高級下載		
※日本3 (14) (14) (14) (14) (14) (14) (14) (14)		
供 了		
		0%
PAN_I INK 连接成功 (V-2 0004 1070 1010) ###### [14 = 4]		
* (1) おお (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		

图 3: 图 2-2-1 烧录工具界面

如上图 2-2-1 所示为烧录工具界面。

- 1、在下载程序配置中的下载程序配置项右键点击加载程序,实现加载烧录程序功能。
- 2、通过点击擦除模式前面图标或右键选择更改烧录擦除模式。
- 3、根据需求选择设置其他下载配置。
- 4、选择下载模式,或直接默认下载到 PAN-LINK 后下载到芯片模式。
- 5、点击下载开始下载程序到芯片。

2.3. 查看帮助文档

通过烧录工具的**帮助-> 查看帮助文档**或直接通过快捷键 F1, 打开查看帮助文档。 PAN-LINK2.0 程序更新方法、以及烧录工具的详细使用说明都在帮助文档中有详述。

5.2 RF TEST

图 4: 图 2-3-1 查看帮助文档

5.2.1 1 功能概述

本文主要介绍 PAN1070 RF 测试固件的使用。

5.2.2 2 环境要求

- PAN1070 EVB 若干块
- USB 转串口工具若干块
- 硬件接线:
 - 使用杜邦线连接 EVB 和 USB 转串口工具:
 - * ICEK(P01) 与 USB 转串口工具 TX 连接
 - * ICED(P00) 与 USB 转串口工具 RX 连接
- PAN1070 ToolBox 下载
- USB TYPE-C 线

5.2.3 3 RF 测试固件说明

NO	固件说明	下载链接	更 新 日 期
1	RF 性能测试 (发射功率、频偏、EVM、107 和 107 对测 收包率等)	PAN1070 RF 测试固件	2024-04- 07
2	RF 信号采集测试 (RSSI)	PAN1070 RF 信号采集	2024-04-
		固件	07

5.2.4 4 演示说明

PAN1070 EVB 板 PIN 脚接线说明:

PAN1070 EVB 板 GPIO	USB 转串口工具
$ICEK_uart1_rx(P01)$	UART_TX
$ICED_uart1_tx(P00)$	UART_RX
VBAT	VCC(3.3V)
GND	GND

4.1 RF 性能测试(串口模式)

RF 测试支持 2 种模式,第一种是采用标准仪器进行测量 (cmw500),另一种采用 pan1070 tool box 工 具进行射频测试。

4.1.1 标准射频测试

- 1. 下载 PAN1070 RF 测试固件
- 2. 烧录.hex 程序,烧录流程可参考J-Flash 烧录方法 或Panlink 烧录方法 , 烧录成功后板子重新上 电。
- 3. 连接串口, 然后然后连接仪器 (cmw500) 的串口和射频接口

4.1.2 Pan1070 Tool Box 工具进行射频测试

- 1. 用 panlink 或者 j-flash 烧录固件" PAN1080 RF 测试固件"。
- 2. PAN1070 的测试固件可在 PAN1070 ToolBox 工具中导出,如下图所示,也可使用路径" 05_TOOLS\RF 测试固件\PAN1070 RF 测试固件.zip"。
- 3. 烧录流程可参考J-Flash 烧录方法 或Panlink 烧录方法 , 烧录成功后板子重新上电。
- 4. 测试流程可参考PAN107x 工具箱用户指南中的第一章 RF 测试。

uart 波特率:115200

典型的测试场景

• TX 测试,可以通过软件发送单载波和 dtm 数据包(下图是一个单载波的典型配置界面),通过频 谱仪观察射频状况

an107xToolBox V0.0.004			_	\times
文件 显示 帮助				
串口设置 USB 设置	测试信息	测试通讯信息		
波特率 115200 ~				
校验位 NONE ~				
数据位 8 ~ ~				
停止位 1 ~ ~				
▶打开串口				
发射 接收 单载波				
频率 2402 MHz ~				
PHY: IM PHY V				
调制指数 Standard Modulation Index				
读取收包数 🔽 读 RSSI				
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
A NOVAL TT -				
▶ 廾始测试				
设备未打开连接!				

图 5: 图-1 单载波配置界面

• RX 测试可以打开 2 个软件, 控制 2 个 107x 芯片, 一个设置为 tx 模式, 一个设置为 rx 模式, tx 端设置 tx counts 发送, rx 端打印收到的 counts, 进而判断 rx 的质量和灵敏度。

4.4 RF 信号采集测试

- 1. 用 panlink 或者 j-flash 烧录固件"RSSIVIEWER_BAUD115200_P00RX_P01TX_V001.hex"。
- 2. 测试固件可在 PAN1080 ToolBox 工具中导出,也可使用路径" 5_Tools\RF 测试固件\PAN1080 RSSI VIEWER 测试固件.zip"。
- 3. 烧录流程可参考J-Flash 烧录方法 或Panlink 烧录方法 , 烧录成功后板子重新上电。

4. 测试流程可参考PAN107x 工具箱用户指南中的第四章 RF 信号采集。

5.3 JFlash 烧录

本文介绍使用 Segger J-FLash 工具烧录固件到 PAN107x SoC 的方法。 在使用 J-Flash 烧录工具前,请确保 J-Link 硬件与 PAN107x 芯片的 SWD 连接正常。 J-Flash 工具操作步骤如下:

1. 打开 PAN107x NDK/ZDK 中的 J-FLash 烧录工具

在 <PAN107x-DK>\05_TOOLS\调试工具\JLink-V644b 目录下找到 "JFlash.exe"

📙 💆 📙 🚽 👘	理 JLink-V644b-2	40327		- 0	×
文件 主页 共享 查看 应用程	序工具				~ ?
← → → ↑ 📙 « 05_TOOLS → 调试工	具 > JLink-V644b-24032	27 → √ ੋ	在 JLink-\	/644b-240327 中.	,P
~ 名称	修改日期	类型	大小		^
Devices	2024/4/3 21:04	文件夹			
	2024/4/3 21:04	文件夹			
ETC	2024/4/3 21:04	文件夹			
GDBServer	2024/4/3 21:04	文件夹			
RDDI	2024/4/3 21:04	文件夹			
📙 Samples	2024/4/3 21:04	文件夹			
USBDriver	2024/4/3 21:04	文件夹			
🔜 JFlash.exe	2024/4/3 21:04	应用程序	703 KB		
🔜 JFlashLite.exe	2024/4/3 21:04	应用程序	344 KB		
🛃 JFlashSPI.exe	2024/4/3 21:04	应用程序	408 KB		
🛃 JFlashSPI_CL.exe	2024/4/3 21:04	应用程序	562 KB		
🔜 JLink.exe	2024/4/3 21:04	应用程序	292 KB		
JLink_x64.dll	2024/4/3 21:04	应用程序扩展	17,586 KB		
JLinkARM.dll	2024/4/3 21:04	应用程序扩展	16,401 KB		
🔜 JLinkConfig.exe	2024/4/3 21:04	应用程序	440 KB		
💽 JLinkDevices.xml	2024/4/3 21:04	Microsoft Edge HTML Document	147 KB		
🔜 JLinkDLLUpdater.exe	2024/4/3 21:04	应用程序	139 KB		
🔜 JLinkGDBServer.exe	2024/4/3 21:04	应用程序	711 KB		
JLinkGDBServer.ini	2024/4/3 21:04	配置设置	1 KB		~
 40 个项目 选中 1 个项目 702 KB					:== ==

图 6: J-Flash 目录路径

- 2. 双击 JFlash.exe 打开软件, 在欢迎界面选择 Create a new project, 然后点击 Start J-Flash 按钮
- 3. 在新建工程界面,点击...,进入 Device 选择界面
- 4. 在 Manufacturer 中选择 Panchip, 然后找到并选择名为 PAN107X 的 Device, 点击 OK 按钮确认
- 5. 点击菜单栏 Target Connect, 连接目标芯片
- 6. 拖动待烧录固件至 J-Flash 软件右侧的空白区域
- 7. 点击菜单栏 Target Production Programming (快捷键 F7), 烧录程序至芯片
- 8. 烧录完成后, 会有弹窗提示
 - 注: 烧录完成后程序不会立刻执行, 需要手动复位一下芯片, 或重新给芯片上电。

SEGGER J-Flash V6.44b	_	×
1 Welcome to J-Flash X Please select one of the following start options: C Open recent project Other C Treate a new project Do not show this message again. Start J-Flash	. 2	
Application log started - J-Flash V6.44b (J-Flash compiled Mar 15 2019 12:09:47) - JLinkARM. dll V6.44b (DLL compiled Mar 15 2019 12:08:42)	(× ~
List of MCU devices read successfully (6826 Devices)		//

图 7: J-Flash 欢迎界面

SEGGER J-Flash V6.44b	_	\times
File Edit View Target Options Window Help		
Application log started - J-Flash V6.44b (J-Flash compiled Mar 15 2019 12:09:47) - JLinkARM.dll V6.44b (DLL compiled Mar 15 2019 12:08:42)	C	~ ~
List of MCU devices read successfully (6826 Devices)		

图 8: 新建工程界面

Man Par Par Par Par	nufacturer Panch anufacturer nchip nchip nchip nchip	Device PAN101X PAN107X	Core	Flash size R	AM size
Par Par Par Par	nchip nchip nchip nchip	PAN101X PAN107X	L'ortey-MII		10111 0120
		PAN1080XA PAN1080XB	Cortex-M0 Cortex-M0 Cortex-M0	252 KB 508 KB 508 KB 1020 KB	16 KB 48 KB 64 KB 64 KB
LOG					
lication J-Flash V JLinkARM.					
-				ОК	Cancel

图 9: Device 选择界面

图 10: 连接目标芯片

SEGGER J-F	ash V6.44b - [new projec	ct *]																	_		×
<u>File Edit Viev</u>	v <u>T</u> arget <u>O</u> ptions <u>W</u>	indow <u>H</u> elp																			
Project - ne	w p 🗖 🗖 🔀	D:\PDK\E	BQB_	tx_01	_rx_0	0.hex															x
Name	Value	Address:	0x0				x <u>1</u> x	2 ×4													
Host connection	USB [Device 0]			4	0	0				0	0	•	n	0	n	-		A0.07.7			
Target interface	SWD	Hddress	0	1	2	3	4	5 6	7	8	9	H	B	U	U 00	E	F	HSCII			
Init SWD sneed	4000 kHz	00000	28	76	บบ	20	F1 (<u> 10 00</u>	иu	F9	NN	ИN	ии	D5	NN	NN	NN	(0			
SWD speed	4000 kHz	00010	00	00	00	00 (00 (00 00	00	00	00	00	00	00	00	00	00				
		00020	00	00	00	00 (00 (<u>00 00</u>	00	00	00	00	00	FD	00	00	00				
MCU	Panchip PAN107X	00030	00	00	00	00 (00 (00 OO	00	FF	00	00	00	01	01	00	00				
Core	Cortex-M0	00040	03	Ø1	ØЙ	00 1	0 3 (A1 00	ØØ	ØØ	ØØ	ØØ	ØØ	5D	18	ØØ	ØØ			1	
Endian	Little	00050	62	Q-1	00	00 1	60 (60 (34 00	00	60	Q-1	00	00	62	Q-1	00	00				
Check core ID	No	00050	03	01	00	00	83 K	91 99 91 99	00	63	01	00	00	05	01	00	00				
Use target HAM	48 KB @ 0x2000000	00000	15	18	บบ	00	00 0	00 00	00	63	61	90	00	85	22	99	20			"-	
Elsoh momoru	Internal bank 0	00070	5F	1A	00	00 (03 (01 00	00	03	01	00	00	03	01	00	00				
Base address		00080	03	01	00	00 (03 (01 00	00	03	01	00	00	00	00	00	00				
Flash size	508 KB	00090	00	00	00	00 (03 (01 00	00	03	01	00	00	03	01	00	00				
		000A0	00	00	00	00 (00 (<u>00 00</u>	00	00	00	00	00	91	ØA	00	00				
		ровра	03	Ø1	ØØ	00	BD 1	12 00	ØØ	75	11	ØØ	ØØ	ØØ	ØØ	ØØ	ØØ				
		00000	60	40	OC	AC 1	00 1	CG 34	EU	99	40	00	47	10	22	01	00	 ц р	 и и	·····	
		000000	03	40	00	40		гю 34 Эр 174	гн	00	40	99	47	10	33	01	66	.п.г	4		
		- NNNNN	28	76	00	20	04 2	20 71	46	68	42	62	DØ	EF	F3	ØÄ	80	(v	qF.B		
		000E0	01	EØ	EF	F3 (08 8	80 71	46	00	4A	10	47	B9	10	00	00		qF.J	.G	
		000F0	04	48	80	47 (Ø4 4	48 00	47	FE	E7	FE	E7	FE	E7	FE	E7	.H.G.H	.G		
		00100	FE	E7	FE	E7 9	91 1	18 00	00	C1	00	00	00	10	B5	43	1A			c.	
		00110	93	42	09	D2	83 1	18 88	18	03	EØ	40	1 E	01	78	5B	1 E	.B		×[.	
1		00120	10	70	50	10	DO 1	NO 10	DN	60	10	0D	42	аD	6.0	60	ъø	"D	D	c	•
		1																			~
Hist LOG																					~~
- ROMTELLOJ @	ECOFFOCO CTD: BIOFFOC	ממססס יחדת חי	000	ee.																	^
- ROMTB1[0][1]	: E0001000, CID: B105E00	D. PID: 000BB	008 J 00A I)WT																	
- ROMT11[0][2]	: E0002000, CID: B105E00	DD, PID: OOOBB	OOB I	PB																	
- Executing in	it sequence																				
- Target inter	ed successfully face sneed: 4000 kHz (Fi	ixed)																			
- J-Link found	1 JTAG device. Core ID:	0x0BB11477 (None)																		
- Connected su	ccessfully																				
Upening data fi - Data file on	ie [D:\rDK\BQB_tx_01_rx_ ened successfully (10798	_00.nex] 38 hutes, 1 ro	nge	CRC	of do	ta = 1	∩v241	14303	CRC	of f	i]e =	= 0×C	9881	465)							
Data Tite op	Cance Successivity (10100	Jo Dytes, I Ia	••8e)	5110	~~ ua		-AL-11	.24000)	510	~- 1		UNU	0101								~
<																					>
															-		-		-		
Ready											C	onn	ecter	d	Cor	re Id	: 0x0	BB11477	Spee	ed: 4000) kH /

图 11: 载入待烧录固件

🔜 SEGGER J-Fla	ash V6.44b - [new p	rojec	t *]																			-		×
<u>File Edit View</u>	Target Options	Wi	ndow	<u>H</u> elp																				
Project - nev	Connect					01	rx (00.he	ex															×
Name	Disconnect							_																_
Heat connection									x]	×2	<u>×4</u>													
Host connection	lest				>		2	3	4	5	6	2	8	9	A	в	C	n	F	F	ASCLL			
Target interface	Production	Progr	ammi	ng	F7	76	00	20	F1	00	00	00	F9	00	00	00	D5	00	00	00	<v< td=""><td></td><td></td><td></td></v<>			
SWD speed	Manual Pro	oram	mina		>	90	00	00	00	00	00	00	00	00	00	00	00	00	00	00				
on b opcod		_		0040	00	-30	00	00	00	00	00	00	00	00	00	00	FD	00	00	00				
MCU	Panchip PAN107X		Ø	иизи	00	ØØ	ЮЙ	ØØ	ЮЙ	ЮЙ	ЮЙ	ри	FF	ри	ЮЙ	ØØ	Ø1	Ø1	ØØ	ØЙ				
Core	Cortex-M0		0	0040	03	Q1	00	00	613	61	00	00	60	00	00	00	50	10	00	00			1	
Endian	Little			0010	0.0	01	00	00	00	01	00	00	00	00	00	00	00	11	00	00				
Check core ID	No		0	0050	63	01	00	00	63	61	ЮЮ	00	03	01	90	00	63	61	00	00				
Use target RAM	48 KB @ 0x20000000	_	0	0060	15	1A	00	00	00	00	00	00	03	01	00	00	85	22	00	20			" -	
		_	0	0070	5F	1A	00	00	03	01	00	00	03	01	00	00	03	01	00	00				
Flash memory	Internal bank U		0	0080	03	01	00	00	03	01	00	00	03	01	00	00	00	00	00	00				
Elash size	DXU 509 K P		Ø	0090	00	ØØ	ØЙ	ØØ	Ø З	Ø1	ЮЙ	аа	Ø 3	Ø1	ЙЙ	ØØ	Ø З	Ø1	ЮЙ	ØЙ				
Fidsri size	300 ND			0070	00	00	00	00	00	00	60	00	00	00	00	00	0.1	801	00	00				
			6	0000	00	66	66	66	50	66	66	66	00	66	66	66	71	UH OO	66	66				
			6	ииви	63	01	00	00	BD	12	ии	NN	75	11	90	00	NN	99	00	ИN		u.		
			0	0000	03	48	85	46	00	FØ	34	FA	00	48	00	47	1D	33	01	00	.H.F.	.4H	.G.3	
			0	00D0	28	76	00	20	04	20	71	46	08	42	02	DØ	EF	F3	09	80	<v< td=""><td>qF.B</td><td></td><td></td></v<>	qF.B		
			0	00E0	01	ΕØ	EF	F3	08	80	71	46	00	4A	10	47	B9	10	00	00		.aF.J	.G	
		_	Ø	ааға	Ø4	48	80	47	Ø4	48	ЮЙ	47	FE	E7	FE	E7	FE	E7	FE	E7	.H.G.	н. <u></u> д		
				0100	DE	57	PE	57	01	10	00	00	C1	00	00	60	10	DC	42	10			·····	
			0	01100	11	40	PE 00	E7	21	10	00	40	01	50	40	45	10	D3	7J E D	10			·····	
			6	0110	93	42	63	DZ	83	18	88	18	03	EØ	40	16	01	78	58	1E	.в	•••••	exl.	-
				61 O FA	110	504	5.0	46	Da	eu.	1 (A	DN	CM	AC	MD	7.2	ab	C-KI	C KI	БМ	D		C	
LOG																								23
- ROMTELLO] @ H - ROMTELLO][0]: - ROMTELLO][1]:	COOFFOOO EOOOEOOO, CID: B1 FOOO1000 CID: B1	05E00	D, PII D PTT	: 000BE	008 S	CS																		^
- ROMTEL[0][2]:	E0002000, CID: B1	05E00	D, PII	: 000BE	BOOB H	PB																		
- Executing ini	t sequence																							
- Initialize	ed successfully	- (7:	(h																					
- T-Link found	1 TTAG device. Cor	e ID:	OxOBE	11477 (None)	Ľ																		
- Connected suc	cessfully																							
Opening data fil	e LD:\PDK\BQB_tx_0	1_rx_	00. hex	 		CPC			- 0	411.4	202	CPC		1	0	0004	AGE							
- Data file ope	enea successfully (10190	o byte	s, ire	mge,	CRU	or d:	atā -	- 0x2	4104.	JUJ,	CAL	OI I	ite -	· oxt:	3F01,	403)							~
<																								>
Erase, program a	nd verify target													C	onne	ected	d	Cor	e Id	0x0	BB11477	7 Spe	ed: 4000	kH /

图 12: 开始烧录

SEGGER J-Fl	ash V6.44b - [new p	projec	st *]																				\times
<u>File Edit V</u> iew	v <u>T</u> arget <u>O</u> ption:	s <u>W</u>	indow <u>H</u> elp																				
Project - ne	w p 🗖 🗖 🕄	83		BQB_	tx_01	rx ()0.he	ex															25
Name	Value		A <u>d</u> dress:	0x0				x <u>1</u>	<u>×2</u>	×4													
Host connection	USB [Device U]	-	Address	Ø	1	2	3	4	5	6	2	8	9	A	B	C	n	F	F	ASCLL			
Target interface	SWD		00000	28	76	60	20	E1	00	00	90	F9	00	00	00	D5	00	00	00	(n			
Init SWD speed	4000 kHz		00010	00	00	00	00	99	00	00	00	66	00	00	00	60	00	00	00				
SWD speed	4000 kHz		00010	00	00	00	00	00	00	00	99	00	00	99	00	50	00	99	66			• • • •	
		_	00020	00	NN	ии	ИN	ИN	00	NN	90	00	ии	90	00	FD	NN	ИN	ИN			• • • •	
мси	Panchip PAN107X	_	00030	00	00	00	00	00	00	00	00	FF	00	00	00	01	01	00	00				
Lore	Lortex-MU	-	00040	03	01	00	00	03	01	00	00	00	00	00	00	5D	18	00	00			1	
Englan Chook ooro ID	Little		00050	03	01	00	00	03	01	00	00	03	01	00	00	03	01	00	00				
Use target BAM	18KB @ 0v20000000	1	00060	15	10	00	00	00	00	00	00	63	Ø1	00	00	85	22	00	20				
Ose target nam	40100 (20020000000	,	00000	- 13 - FP	10	00	00	00	00	00	00	00	01	00	00	0.0	04	00	00				
Flash memory	Internal bank 0		01000	51	TH	00	99	69	0T	99	99	69	01	99	99	69	01	99	99			• • • •	
Base address	0x0	J-F	lash V6.44b														×	90	NN				
Flash size	508 KB																	90	00				
																		90	00				
			Target	erase	d, pr	ogran	nmed	and	l verit	ied s	ucces	sfully	y - Co	omple	eted	after		90	00		u		
			3.080 s	ec														a-1	00	HF	4 8 6		
																		20	00				
																		97	00		чг.в		
																		10	00		qF.J.G	i	
															確	定		PΕ	E7	.H.G.H	.G		
														5			6	13	18			C.	
			00110	93	42	09	D2	83	18	88	18	03	EØ	40	1E	01	78	5B	1E	.B	e.	.×[.	
1			00100	10	70	50	10	DO	D 2	10	DIJ	60	10	ΩD	40	۵D	67	ദാ	ъø	"D	P (•	-
LOG																							23
- End of flash	programming																						
- Flash progra	mming performed for	r 1 ra	ange (110592 b	ytes)																		
- 0x0000 - 0x1	AFFF (27 Sectors,	108 B	(B)																				
- Ising the na	tive verify function	on of	the flash alg	oritl	m																		
- End of verif	ying flash																						
- Start of res	toring																						
- End of resto	ring																						
- De-initia	lized successfully																						
- Target erase	d, programmed and v	verifi	ed successful	ly -	Comp	lete	l aft	er 3	3. 080	sec													
																							~
<																							>
Ready													C	onn	ecte	d	Cor	e Id	: 0x0	BB11477	Speed	: 4000	kH _

图 13: 烧录完成

5.4 Panchip 2.4G OTA 工具

Panchip 2.4G OTA 是 Shanghai Panchip Microelectronics Co.,Ltd. 为 PAN1070 SDK 提供的开发工具 集合,目前包含如下功能:

• 配合 2.4G 主机对连接的从机设备进行 OTA 升级

下载单 exe 程序的工具。

该程序为单独一个 exe 可执行文件;

启动时间相对较慢。

下载文件夹程序工具。

该程序为一个文件夹,里面的 exe 可执行程序需要依赖文件夹内的库文件。 启动时间较快。

5.4.1 1. OTA **升级**

配合鼠标项目支持 2.4G OTA 的主机对从机设备进行 OTA 升级。

1.1. OTA 界面

🔀 Panchip 2.4G OTA V X.X.XXX	- D	×
文件 显示 帮助		
串口设置		
串口号 COM4 #USB-Enhanced-SERIAL CH343 (COM4)	─ 波特率 921600	\sim
程序设置		
加载程序 D:\test\OTA\ota.bin	扇区大小 4 KB	\sim
程序大小: 0x24564(145.348 KB) 扇区对齐大小: 0x25000(148 KB) 扇区数量: 37		
RF 参数设置		
发射功率(dbm) 0 V 频率(MHz) 2402 V 地址(Hex) 71 76 41 29		
● 启动连接 设置配置	升级传输数据包大小(Bytes) 128	\sim
▶ 开始扫描 单设备 ✓	每传输扇区数据等待时间(ms) 50 扫描设备超时时间(s) 1	
	▶ 开始升级	
	► 71×1715/X	
		0%

图 14: OTA 界面

1.2. 软件使用方法

- 1. 加载 OTA 程序文件, "*.bin"格式程序文件。
- 2. 选择 2.4G 主机对应的串口号。
- 3. 启动连接,打开与主机的连接,并设置 RF 参数配置。
- 4. 如果修改了 RF 参数,需要点击设置配置,重新设置 RF 配置。

5. 设置选择扫描设备模式,点击扫描设备,必须成功扫描到设备才能进行 OTA 升级

6. 点击开始升级,进行 OTA 升级。

详细使用说明,可以点击软件菜单的帮助->查看帮助文档。

Chapter 6

开发工具

6.1 PAN107x Toolbox 工具箱

PAN107x Toolbox 是 Shanghai Panchip Microelectronics Co.,Ltd. 为 PAN1070 SDK 提供的开发工具集合,目前包含如下功能:

- 进行简单的 RF 测试
- 支持项目 DFU 固件升级
- PAN107x 芯片引脚规划
- 使用 PAN107x 芯片检测当前环境信号强度并显示

下载单 exe 程序的工具。

```
该程序为单独一个 exe 可执行文件;
```

启动时间相对较慢。

下载文件夹程序工具。

该程序为一个文件夹,里面的 exe 可执行程序需要依赖文件夹内的库文件。 启动时间较快。

6.1.1 **功能界面选择**

显	ъ	帮助	
R	简	体中文	Ctrl+Alt+C
	Er	nglish	Ctrl+Alt+E
(_T))	RF	测试	Ctrl+Alt+R
Ū,	D	FU	Ctrl+Alt+D
۰	릵	出脚	Ctrl+Alt+P
71	RF	信号采集	Ctrl+Alt+I

图 1: 显示切换功能界面

6.1.2 1. RF 测试

使用此功能,配合 PAN107x 芯片 RF 测试固件,通过串口通讯可以测试 PAN107x 芯片的发射、接收收 包数、单载波发射等功能。

配合鼠标项目支持 USB 通信可以测试 PAN107x 芯片的发射、接收收包数、单载波发射等功能。

1.1. RF 测试界面

串口设置 USB 设置	测试信息 观试通讯信息
串口号 COM3 #USB-Enhanced-SERIAL CH >	
☆特案 115200 ✓	
校验位 NONE ~	
数据位 8 ~ ~	
停止位 1 🗸 🗸 🗸	
▶打开串口	
发射 接收 单载波	
频率 2402 MHz ~	
数据长度 37 Bytes ~	
包载荷 PRBS9 V	
PHY: 1M PHY ~	
功率 0 dBm V	
发包数 1000 0: 一直发射	
测试次数 1	
□ 设备无回复模式	
▶ 并始测试,	

图 2: RF 测试界面

1.2. 软件使用方法

- 1. 从工具的帮助->RF 测试 Demo 程序,导出或下载得到 RF 测试 Demo 程序固件,然后下载到 PAN107x 芯片。
- 2. 使用 USB 转串口设备将 PAN107x 芯片通过串口与电脑可以进行通讯连接。
- 3. 打开 PAN107xToolBox 工具的 RF 测试界面。
- 选择 USB 转串口设备的串口打开连接,选择对应的测试模式,即可以进行测试。
 详细使用说明,可以点击软件菜单的 帮助-> 查看帮助文档。

6.1.3 2. 设备固件升级

使用此功能,可以通过 USB 实现固件升级。

2.1. 设备固件升级界面

2.2. 软件使用方法

- 1. 先将鼠标方案设备通过 USB 线连接到电脑。并确保设备进入 bootloader USB 通讯模式。
- 2. 打开 PAN107xToolBox 工具的 DFU 界面。
- 3. 选择添加固件程序,确保成功载入固件程序。
- 4. 确认选择的 USB 设备为需要进行升级的设备。
- 5. 点击"**开始下载"则会进入下载流程进行设备固件升级。

详细使用说明,可以点击帮助->查看帮助文档。

设备设置								
芯片 USB 设备								\sim
程序设置								
程序区大小 51	2K (Flash: 50	8K) ~ 请按照芯片	7程序区实际大小选择					-
地址	大小	CRC		路径				添加程序
								编辑程序
								删除程序
下载&验证	\sim						▶开始	下载
								0%
就绪!								

图 3: DFU 界面

6.1.4 3. 芯片引脚规划

使用此功能,方便用户快速查看特定型号芯片引脚功能。也可以对 PAN107x 特定型号芯片的引脚进行选择分配,导出分配报告,方便在应用中规划引脚。

3.1. 引出脚配置界面

3.2. 软件使用方法

- 1. 打开 PAN107xToolBox 工具的引出脚配置界面。
- 2. 选择使用的芯片型号。
- 3. 可以通过选择最左边的功能列表的功能,会在中间显示对应功能支持的配置引出脚选项。
- 4. 也可以直接在右边的芯片图示中选择对应的引脚的功能。
- 5. 选择完成,可以通过点击 PDF 按钮图标,则会生成配置报告 pdf 文档。

详细使用说明,可以点击帮助->查看帮助文档。

6.1.5 4.RF 信号采集

使用此功能, 配合 PAN107x 芯片 RF 信号采集固件, 可以通过 PAN107x 采集当前环境中指定频点的信号强度并进行显示。

4.1. RF 信号采集界面

4.2. 软件使用方法

- 1. 需要预先下载对应 RF 信号采集固件到 PAN107x 芯片。
- 2. 使用 USB 转串口设备将 PAN107x 芯片通过串口与电脑可以进行通讯连接。
- 3. 打开 PAN107xToolBox 工具的 RF 信号采集界面。

图 4: 引出脚配置界面

图 5: RF 测试界面

选择 USB 转串口设备的串口打开连接,选择需要采集的对应频点的信号强度,然后点击开始。
 详细使用说明,可以点击软件菜单的 帮助-> 查看帮助文档。

Chapter 7

其他文档

PAN1070 SoC 相关的其他文档请参考:

- PAN107x BQB Test Report
- PAN1070 功耗测试报告
- PAN10xx 系列蓝牙兼容性测试报告

Chapter 8

更新日志

8.1 PAN1070 NDK v0.5.0

PAN1070 Nimble DK v0.5.0 (2024-06-07) 已发布: 注: PAN1070 NDK 现已兼容 PAN101x 系列芯片。

8.1.1 1. SDK

nimble

- 优化 Nimble Samples Configuration 配置选项
- 添加系统看门狗功能
- 优化例程 SRAM 资源消耗
- 新增对 PAN101x 芯片的支持
- 优化温度自动检测流程,修复与 App 层同时使用 ADC 产生冲突的问题

Panchip HAL

- Panchip Spark BLE Controller Library:
 - 更新 PHY 驱动,优化 RF 性能
 - 新增动态修改 Tx Power 接口
- Panchip PRF (2.4G Private RF) Library:
 - 更新 PHY 配置,优化 RF 性能
 - 更新 Tx Power
- BSP:
 - 更新 FT 校准信息载入流程,并节约一些 SRAM
 - 新增对 PAN101x 芯片的支持,包括 Driver 及 Flash 烧录算法等
 - 更新 ADC Driver, 使其能够兼容不同 FT 版本的芯片
 - 更新 CLK Driver, 优化 WDT/WWDT 时钟源选择接口
 - 更新 I2C Driver, 修复 I2C 例程无法正常工作的问题
 - 更新 LP Driver,关闭 DeepSleep 状态下 Flash 的供电,以节约功耗

- 新增 Power Driver, 用于 Nimble 相关例程中根据当前温度动态修改芯片各个供电配置

Samples

- 蓝牙:
 - bluetooth/bleprph_hr
 - * 支持 pan101x 芯片 (新增 pan101x 芯片工程)
 - solutions/ble_rgb_light
 - * 支持 pan101x 芯片 (新增 pan101x 芯片工程)
- 其他:
 - mcu_boot: 更新 bootloader, 优化 2.4G OTA 功能
 - 所有例程优化 configuration 配置框架

8.1.2 2. HDK

• 新增 PAN1010S9FA 核心板图纸

8.1.3 3. MCU

- 更新 ADC 例程:
 - 优化使用流程, 使采样结果更准确
- 更新 PAN1070_PRF_TRX 开发指南.pdf 文档
- 新增 PAN101x 芯片 Keil Flash 烧录算法 (FLM) 文件 PAN101X_252KB_FLASH.FLM (位于 mcu_misc 目录)
- 所有例程:
 - 更新芯片校准信息载入流程及相关 Log 输出
 - 增加对 PAN101x 芯片的支持(源码与 PAN107x 共用,但新增 PAN101x Keil Project,注意 有少数例程因 PAN101x 引脚限制无法支持)

8.1.4 4. DOC

- 更新文档中心主页,新增 PAN101x 相关内容介绍
- 更新 NDK 快速入门指南文档,并增加对 PAN101x 的描述
- 新增 NDK Configuration 配置开发指南文档
- 更新 PAN107x EVB 介绍文档,将其更名为 PAN10xx EVB 介绍,并新增对 PAN101x 相关介绍
- 更新 PAN107x 硬件参考设计文档,将其更名为 PAN10xx 硬件参考设计,并新增对 PAN101x 相关 介绍
- 更新 BLE Peripheral HR 例程文档,新增对 PAN101x 芯片支持情况的描述
- 优化 BLE RGB Light 例程文档,新增对 PAN101x 芯片支持情况的描述
- 更新 NDK Mcu Boot 开发指南文档,新增生成签名文件的环境配置介绍
- 更新 量产烧录工具说明文档, 增加对 PAN101x 芯片的描述
- 新增 RF TEST 说明文档,介绍 RF 测试固件的使用方法
- 新增 JFlash 烧录说明文档,介绍使用 Segger J-FLash 工具烧录固件到 PAN107x SoC 的方法

- 新增 Panchip 2.4G OTA 工具说明文档,介绍 2.4G OTA 的主机对从机设备进行 OTA 升级的方法
- 更新 NDK 常见问题 (FAQs) 文档, 阐述某些情况下, 芯片正常工作的时候, 使用 JLink (SWD) 无法(或很难) 再次烧录程序的原因及解决方法
- 更新所有文档中与特定芯片相关的描述,新增对 PAN101x 芯片支持情况的描述
- 修复一些表述上的问题

8.1.5 5. TOOLS

- 新增 Panchip 2.4G OTA 工具,用于配合 OTA 主机对从设备进行 OTA 升级
- 更新量产烧录工具 PAN10xx Download Tool 的介绍:
 - 新增对 PAN101x 支持情况介绍
- 更新 RF 测试固件至 v002, 优化性能
- 更新调试工具目录:
 - 新增 ForceEraseVectorTable_PAN107x.bat 脚本,可擦除芯片 Flash 上的 Vector Table, 阻止程序正常执行(详见开发指南/FAQs 文档相关说明)

8.1.6 6. ISSUES

新增问题

• BUG #873: 兼容问题-peripheral_ota—与小米手机 11 配合升级,小米 11 安装的 nRF Conenct 软件版本是 4.28 时,无法升级

遗留问题

• BUG #802: PRF OTA,带 OTA 作为 client,利用 ota 升级其他设备偶尔会失败

8.2 PAN1070 NDK v0.4.0

PAN1070 Nimble DK v0.4.0 (2024-04-03) 已发布:

8.2.1 1. SDK

nimble

- 优化 Keil 工程编译信息,清除编译警告
- 优化 app_config_spark.h 的配置选项和结构层次
- 优化 SoC Power Domain,进而优化功耗(支持定时检测温度并根据当前温度优化芯片 Power 配置)

Panchip HAL

- Panchip Spark BLE Controller Library:
 - 优化 RF 性能
 - 修复 RCL 作为低功耗时钟时的连接问题

- 修复 RF PHY 问题
- Panchip PRF (2.4G Private RF) Library:
 - 更新 DCOC 校准流程
 - 修复频点设置接口 Bug
 - 更新 Tx Power 档位
 - 更新 g_250k deviation 为 170k
 - 优化读 rssi 接口, 增加 rssi 全局变量
- BSP:
 - 更新 FT 校准信息载入流程
 - 更新 ADC Driver,新增一些 API 接口,以简化 ADC 使用流程
 - 更新 CLK Driver,新增选择 PWM 时钟源的 API 接口
 - 更新 I2C Driver,修复潜在的问题
 - 更新 PWM Driver,新增一些易用的 API 接口
 - 更新 TIMER Driver, 修复一些问题
 - 修复一些寄存器名称错误

Samples

- 蓝牙:
 - bluetooth/ble_multi_role (新增)
 - * BLE 多主多从例程
 - bluetooth\bleprph_throughput (新增)
 - * BLE 从机吞吐率例程
 - bluetooth\bleprph_distance (新增)
 - * BLE 距离测试例程(心跳服务以及支持不同 phy 切换)
 - bluetooth/peripheral_hr
 - * 修复多次断连后重连死机问题
- 方案:
 - solutions/ble_vehicles_key
 - * 适配 RSSI 波形显示
 - * 修复不同手机配对多次产生 cccd settings 条目不够最终导致音量调整失效的情况
- 其他:
 - pan107x_mcu_boot: 更新 bootloader, 新增 2.4G OTA 功能

8.2.2 2. HDK

• 移除过期的测试板图纸

8.2.3 3. MCU

- 新增 PRF_OTA_CLIENT 例程:
 - 2.4G OTA 客户端工程, 演示 2.4G OTA 功能
- 新增 PRF_TX_SAMPLE_UI 和 PRF_RX_SAMPLE_UI 例程:
 - 带屏幕显示的 2.4G 距离测试例程
- 移除 mcu_misc 目录下的旧版本 Keil Flash 烧录算法 (FLM) 文件, 新增 PAN107X_508KB_FLASH.FLM
- 更新所有 Keil 工程默认使用的 FLM 文件

8.2.4 4. DOC

- 新增 ble_multi_role 例程文档
- 新增 bleprph_distance 例程文档
- 新增 bleprph_throughput 例程文档
- 新增 mcu_samples_doc/PAN1070_PRF_UI 距离测试说明.pdf 例程文档
- 更新 ndk_develop_environment_intro 介绍文档, 更新 FLM 文件说明
- 更新 ndk_mcu_boot 开发指南文档,新增生成签名文件的环境配置介绍
- 优化文档目录架构,拆分了 NDK 和 ZDK 文档,使得文档架构更加清晰

8.2.5 5. TOOLS

- 更新工具箱工具 PAN107x ToolBox 至 v0.0.004:
 - 新增 USB 通信兼容
- 新增 RF 测试固件:
 - 新增 PAN107x RF 测试固件
 - 新增 PAN107x RSSI VIEWER 测试固件
- 新增 JLink v6.44b 软件
 - 支持 PAN107x 芯片的 Jlink 命令行调试, JFlash 烧录等

8.2.6 6. ISSUES

新增问题

• BUG #802: PRF OTA, 带 OTA 作为 client,利用 ota 升级其他设备偶尔会失败

8.3 PAN1070 NDK v0.3.0

PAN1070 Nimble DK v0.3.0 (2024-01-19) 已发布:

8.3.1 1. SDK

nimble

- 新增 Bootloader, 并默认在各例程中使能, 可通过 App 工程配置文件禁用
- 新增 SMP BT 子系统,以支持蓝牙 OTA 功能
- 更新 nimble ble host 一些细节
- 新增蓝牙低功耗定向优化配置,用于一些特殊的功耗测试场景

Panchip HAL

- Panchip Spark BLE Controller Library:
 - 优化 SRAM 占用
 - 优化 MD
 - 新增运动健康协议支持
 - 新增 DTM 支持
 - 优化 adv Rx timeout 至 60us
 - 优化 RF Post Tx Time
 - 更新 PHY 参数
 - 修复断连信息未及时清除问题
 - 修复 0x28 断连问题
- Panchip PRF (2.4G Private RF) Library:
 - 更新 PHY 参数
 - 完善一些 API 接口
- BSP:
 - 更新 FT 校准信息载入流程
 - 更新 ADC Driver,新增一些 API 接口,以简化 ADC 使用流程
 - 优化系统启动流程
 - 修复一些引脚定义错误
 - 修复 GPIO_DB 相关结构体名称错误的问题
 - 修复低功耗 Driver 的潜在问题
 - 移除一些不必要的代码以避免潜在的编译错误风险

演示例程

- 蓝牙:
 - bluetooth/peripheral_hr_ota (新增)
 - * 演示蓝牙 OTA 功能
- 方案:
 - solutions/ble_mouse (新增)
 - * BLE 鼠标方案
 - solutions/multimode_mouse (新增)

- * 多模鼠标方案
- solutions/multimode_mouse_dongle (新增)
 - * 多模鼠标配套 Dongle 方案
- solutions/ble_prf_sample (新增)
 - * BLE & 2.4G 双模方案
- 其他:
 - 所有例程均添加了 OTA 支持,并提供了 3 种编译和配置模式:
 - $\ast\,$ Bare Metal
 - * OTA in Bootloder
 - $\ast\,$ OTA in App

8.3.2 2. HDK

• 新增 PAN107x EVB 底板图纸、设计源文件、生产文件 v1.1

8.3.3 3. MCU

- 更新 ADC 演示例程:
 - 优化 ADC Convert Test、VDD/4 Test、Temperature Test 流程,使用新的接口以简化使用
- 更新 CLK 演示例程:
 - 修复一些问题
- 更新 LP 演示例程:
 - 重命名例程名称为 LowPower
- 新增 PRF_Template_SAMPLE 例程:
 - 2.4G 模板工程,以方便用户快速创建自己的 2.4G 工程
- 其他:
 - 修复 GPIO_DB 相关结构体名称错误的问题
 - 修复例程生成的 Image 名称与预期不一致的问题

8.3.4 4. DOC

- 新增 ble_mouse 例程文档
- 新增 multimode_mouse 例程文档
- 新增 multimode_mouse_dongle 例程文档
- 新增 ble_prf_sample 例程文档
- 更新 mcu_samples_doc/PAN1070_ADC 例程说明.pdf 例程文档,以匹配工程最新的修改
- 新增 ndk_mcu_boot 开发指南文档,介绍 NDK 的 Bootloader
- 新增 pan107x_evb_intro 硬件资料文档,介绍 PAN107X EVB 相关内容
- 更新 pan107x_hw_reference_design 硬件参考设计文档,修改了一些具体描述
- 新增 toOlbox_intro 工具箱工具介绍文档

8.3.5 5. TOOLS

- 更新量产烧录工具 PAN107x Download Tool 至 v0.0.002:
 - 修复一些潜在问题
- 新增工具箱工具 PAN107x ToolBox v0.0.003:
 - 新增引出脚界面
 - 新增 RF 信号采集界面

8.4 PAN1070 NDK v0.2.0

PAN1070 Nimble DK v0.2.0 (2023-11-19) 已发布:

8.4.1 1. SDK

nimble

- 更新 BLE Controller, 优化一些内部流程并修复一些问题
- 新增获取 MAC 地址的接口

Panchip HAL

- 新增载入 Hardware Calibration 校准参数的接口
- 优化 WDT 接口, 扩大 WDT Reset 的复位范围
- 更新 RF Lib, 优化 2.4G 通信流程

演示例程

- ble_cent_prph (新增):演示蓝牙主从一体功能
- ble_central (新增): 演示蓝牙主机功能
- bleprph_hr (新增): 演示蓝牙从机功能, 包含 GATT 服务: HR (Heart Rate), 连接订阅服务后, 会上报虚拟的心率值
- bleprph_enc (新增): 演示外设以及加密配对功能,可以和主机示例进行对测
- ble_hid_selfie (新增):自拍解决方案,通过蓝牙 HID 控制手机拍照
- ble_panchip_cte_beacon (新增): Panchip 蓝牙定位标签方案,通过发送特定的广播数据,实现 蓝牙定位功能
- ble_rgb_light (新增): 蓝牙 RGB 灯控方案, 演示 BLE RGB 灯与手机 APP 进行连接, 通过 APP 控制 RGB 灯的亮度与颜色
- ble_hid_uart_mult_roles (新增): 蓝牙串口透传解决方案, 演示蓝牙 hid 串口透传功能, 支持 1 主 1 从
- ble_vehicles_key> (新增): 蓝牙车钥匙解决方案, 演示基于 HID 服务的自动连接服务

8.4.2 2. HDK

• 新增 PAN1070 UA1A EVB 图纸、设计源文件、生产文件

8.4.3 3. MCU

- 更新 LP 低功耗例程,优化 CPU Retention and Remap 流程
- 更新 2.4G 例程及对应文档, 演示更多的通信模式
- 更新各个底层 Driver 例程, 增加初始化阶段载入芯片校准信息的流程

8.4.4 4. DOC

- 新增 ble_cent_prph 例程文档
- 新增 ble_central 例程文档
- 新增 bleprph_enc 例程文档
- 新增 bleprph_hr 例程文档
- 新增 ble_hid_selfie 例程文档
- 新增 ble_hid_uart_mult_roles 例程文档
- 新增 ble_pcte_beacon 例程文档
- 新增 ble_rgb_light 例程文档
- 新增 ble_vehicles_key 例程文档
- 新增 NDK App 开发指南文档
- 新增 PAN107x 硬件参考设计文档
- 新增 量产烧录说明文档

8.4.5 5. TOOLS

- 新增量产烧录工具 PAN107x Download Tool
- 新增 Testbox RF 测试固件

8.5 PAN1070 NDK v0.1.0

PAN1070 Nimble DK v0.1.0 (2023-10-24) 已发布:

8.5.1 1. SDK

NDK 软件开发框架基于 Keil + FreeRTOS + NimBLE, 其中:

- Keil 是 SDK 支持的软件开发环境
- FreeRTOS 是一个开源实时操作系统(RTOS),用于配合 NimBLE 实现蓝牙应用
- NimBLE 是一个开源低功耗蓝牙(BLE) 5.1 协议栈,其实际上是 Apache Mynewt 项目的一部分

解决方案

• esl: ESL 价签方案演示例程,支持外部 SPI Flash 存储、EPD 墨水屏、低功耗模式、RF 通信等功能。

8.5.2 2. HDK

目前版本提供了如下硬件相关资料:

• PAN107B QFN40 测试板图纸、设计源文件、生产文件

8.5.3 3. MCU

目前版本提供了如下 MCU 裸机 Keil 例程及相关文档:

- ADC
- CLK
- CLKTRIM
- DebugProtect
- DMA
- EFUSE
- FMC
- GPIO
- I2C
- LP
- PRF_B250K_RX
- PRF_B250K_TX
- PWM
- SPI
- TIMER
- UART
- USB_HID
- WDT
- WWDT

8.5.4 4. DOC

目前版本提供了如下文档:

- NDK 快速入门指南
- NDK 开发环境介绍
- NDK 整体框架介绍
- Nimble 简介
- PAN107x 硬件参考设计指南
- ESL 电子货架标签方案例程说明
- MCU 底层外设驱动例程说明
- 低功耗开发指南
- NDK RAM 使用情况分析以及优化指南

8.5.5 5. TOOLS

目前版本提供了如下工具:

- 串口工具 (PC 工具)
- Air Sync Debugger (手机测试软件安卓 APK)
- Google Home (手机测试软件安卓 APK)
- nRF Connect (手机测试软件安卓 APK)
- nRF Mesh (手机测试软件安卓 APK)
- Siliconlabs Bluetooth Mesh (手机测试软件安卓 APK)

8.5.6 6. 已知问题

• MCU USB_HID 例程暂未通过测试