LowPower: Standby Mode 1 LP Timer Wakeup¶
1 功能概述¶
本例程演示如何使 SoC 进入 Stnadby Mode 1 状态,然后通过内部 LP Timer 定时将其唤醒。
2 环境准备¶
硬件设备与线材:
PAN1080 EVB 核心板与底板各一块
JLink 仿真器(用于烧录例程程序)
电流计(本文使用电流可视化测量设备 PPK2 [Nordic Power Profiler Kit II] 进行演示)
USB-TypeC 线一条(用于底板供电和查看串口打印 Log)
杜邦线数根(用于连接各个硬件设备)
硬件接线:
为确保能够准确地测量 SoC 本身的功耗,排除底板外围电路的影响,请勿将 EVB 核心板插到 EVB 底板上
使用 USB-TypeC 线,将 PC USB 插口与 EVB 底板 USB->UART 插口相连
使用杜邦线将(根据核心板芯片的型号不同,以下两种接法二选一):
EVB 底板上的 TX0 引脚与核心板上的 P00 引脚相连, EVB 底板上的 RX0 引脚与核心板上的 P01 引脚相连(若核心板芯片为 QFN32 或 LQFP64 封装)
EVB 底板上的 TX0 引脚与核心板上的 P30 引脚相连, EVB 底板上的 RX0 引脚与核心板上的 P31 引脚相连(若核心板芯片为 QFN48 封装)
使用杜邦线将 JLink 仿真器的:
SWD_CLK 引脚与 EVB 核心板的 P46 引脚相连
SWD_DAT 引脚与 EVB 核心板的 P47 引脚相连
SWD_GND 引脚与 EVB 核心板的 GND 引脚相连
将 PPK2 硬件的:
USB DATA/POWER 接口连接至 PC USB 接口
VOUT 引脚连接至 EVB 核心板的 VBAT 引脚
GND 引脚连接至 EVB 核心板的 GND 引脚
PC 软件:
串口调试助手(UartAssist)或终端工具(SecureCRT),波特率 921600(用于接收串口打印 Log)
nRF Connect Desktop(用于配合 PPK2 测量 SoC 电流)
3 编译和烧录¶
例程位置:zephyr\samples_panchip\low_power\standby_m1_lptmr_wakeup
使用 ZAL 工具擦除 Flash 程序。关于 ZAL 工具的详细介绍请参考:Zephyr APP Launcher 工具介绍。
4 例程演示说明¶
PC 上打开 PPK2 Power Profiler 软件,供电电压选择 3300 mV,然后打开供电开关:
测试芯片中目前还没有程序,所以看到此时芯片耗电保持在 3mA 左右。
使用 ZAL 工具将编译后的例程烧录至芯片
烧录成功后,最好断开 JLink 与芯片的连接以防止芯片 P46 和 P47 两个引脚有漏电情况发生
从串口工具中看到如下的打印信息:
Try to load HW calibration data.. DONE. - Chip Type : 0x80 - Chip CP Version : None - Chip FT Version : 5 - Chip MAC Address : D0000C0293CA - Chip Flash UID : 31373237300A29494330FFFFFFFFFFFF - Chip Flash Size : 1024 KB *** Booting Zephyr OS build zephyr-v2.7.0-1347-g4073b5da347f *** Reset Reason: NVIC System Reset. Busy wait 1s to keep SoC in active mode.. Now try to enter SoC standby mode 1 with specific lptmr timeout.. Try to load HW calibration data.. DONE. - Chip Type : 0x80 - Chip CP Version : None - Chip FT Version : 5 - Chip MAC Address : D0000C0293CA - Chip Flash UID : 31373237300A29494330FFFFFFFFFFFF - Chip Flash Size : 1024 KB *** Booting Zephyr OS build zephyr-v2.7.0-1347-g4073b5da347f *** Reset Reason: Standby Mode 1 LP Timer Wakeup. Busy wait 1s to keep SoC in active mode.. Now try to enter SoC standby mode 1 with specific lptmr timeout..
由上述 Log 可得知以下信息:
第一次芯片 Reset 原因为 NVIC System Reset,这是因为本次芯片是程序烧录后由 JLink 触发的软件 Reset
接着芯片在 Active 状态下等待了 1s,随后进入了 Standby Mode 1 状态
约 5s 后,芯片从 Standby Mode 1 下醒来并复位,此次 Reset 原因为 Standby Mode 1 LP Timer Wakeup
然后芯片继续在 Active 状态下等待 1s,随后重新进入了 Standby Mode 1 状态
如此往复
此时观察芯片电流波形:
由电流波形看出芯片在 Standby Mode 1 状态下保持了 5s(此状态下电流为 1.4uA 左右),然后被唤醒并触发复位, 重新初始化后又进入 Standby Mode 1 模式等待再次唤醒
5 开发者说明¶
5.1 App Config 配置¶
本例程的 App Config(对应 prj.conf 文件)配置如下:
# Low Power
CONFIG_PM=y
CONFIG_BT_CTLR_SLEEP_CLOCK_SOURCE=1
# Disable Serial Uart & Log.
# CONFIG_SERIAL=n
# CONFIG_UART_INTERRUPT_DRIVEN=n
# CONFIG_CONSOLE=n
# CONFIG_UART_CONSOLE=n
# CONFIG_PRINTK=n
# Forcely calibrate 32K RCL Clock
CONFIG_SOC_FORCE_CALIB_RCL_CLK=y
# Enable DC/DC
CONFIG_SOC_DCDC_PAN1080=y
其中:
CONFIG_PM=y
:使能低功耗流程CONFIG_BT_CTLR_SLEEP_CLOCK_SOURCE=1
:低功耗时钟相关配置(目前必须固定配置为1)CONFIG_SOC_FORCE_CALIB_RCL_CLK=y
:在系统初始化阶段强制校准内部 32K RCL Clock 时钟(若当前使用的芯片为校准后的芯片,则此开关也可以不开以节约系统启动时间)CONFIG_SOC_DCDC_PAN1080=y
:使能芯片的 DCDC 供电模式,以降低芯片动态功耗
5.2 App DeviceTree 配置¶
本例程的 App DeviceTree(对应 app.overlay 文件)配置如下:
&uart1 {
status = "disabled";
};
&clk_xtl {
/* Frequency of XTL clock, DO NOT CHANGE THIS ITEM */
clock-frequency = <32768>;
/* Enable/Disable the external 32768 Hz low speed crystal oscillator */
status = "disabled";
};
&clk_rcl {
/* Frequency of RCL clock, DO NOT CHANGE THIS ITEM */
clock-frequency = <32000>;
/* Enable/Disable the internal 32 KHz Low Speed RC */
status = "okay";
};
&dpll {
/* f(dpll_output) = f(dpll_input) / clock_div * clock_mult */
clocks = <&clk_xth>;
clock-div = <2>; /* Fixed to 2 */
clock-mult = <4>; /* Can be 3 (48MHz) or 4 (64MHz) */
status = "okay";
};
&rcc {
clock-names = "clk_system", "clk_slow";
clocks = <&dpll &clk_rcl>;
clock-frequency-system = <DT_FREQ_M(64)>;
clock-frequency-slow = <32000>;
ahb-prescaler = <1>;
apb1-prescaler = <1>;
apb2-prescaler = <1>;
};
其中:
将 uart1 的
status
属性配置为disabled
以禁止系统上电后初始化 uart1 设备,确保不会因为 uart1 的引脚配置产生 IO 漏电将 clk_xtl 的
status
属性配置为disabled
以禁用 32768Hz XTL 低速晶振(此为 SDK 默认配置)将 clk_rcl 的
status
属性配置为okay
以打开 32kHz RCL 内部低速时钟(此为 SDK 默认配置)将 dpll 的
clock-mult
属性配置为4
以将 DPLL 时钟输出配置为 64MHz(此为 SDK 默认配置)将 rcc 的:
clocks
属性的第 1 项(clk_system)配置为dpll
以将系统高速时钟(AHB 总线时钟)源选择为 DPLL 时钟(此为 SDK 默认配置)clocks
属性的第 2 项(clk_slow)配置为clk_rcl
以使系统使用 32kHz RCL 内部低速时钟(此为 SDK 默认配置)clock-frequency-slow
属性配置为32000
以告诉系统当前使用的低速时钟频率为 32000 Hz(此为 SDK 默认配置)
5.3 程序代码¶
5.3.1 主程序¶
主程序 main() 函数内容如下:
void main(void)
{
uint8_t rst_reason;
uint32_t lptmr_cnt;
/* Get the last reset reason */
printk("\nReset Reason: ");
rst_reason = soc_reset_reason_get();
switch (rst_reason) {
case SOC_RST_REASON_PIN_RESET:
printk("nRESET Pin Reset.\n");
break;
case SOC_RST_REASON_SYS_RESET:
printk("NVIC System Reset.\n");
break;
case SOC_RST_REASON_STBM1_LPTMR_WAKEUP:
printk("Standby Mode 1 LP Timer Wakeup.\n");
break;
default:
printk("Unhandled Reset Reason, refer to more reason define in soc.h!\n");
}
printk("\nBusy wait 1s to keep SoC in active mode..\n");
k_busy_wait(1000000);
printk("\nNow try to enter SoC standby mode 1 with specific lptmr timeout..\n\n");
#ifdef CONFIG_SERIAL
/* Waiting for UART Tx done and re-set UART IO before entering standby mode 1 to avoid current leakage */
reset_uart_io();
#endif
/* Convert timeout in milliseconds to LP Timer Count */
lptmr_cnt = LPTMR_TIMEOUT_MS * PAN_RCC_CLOCK_FREQUENCY_SLOW / 1000ull;
/* Enter standby mode 1 */
soc_enter_standby_mode_1(STBM1_WAKEUP_SRC_LPTMR, STBM1_RETENTION_SRAM_NONE, lptmr_cnt);
#ifdef CONFIG_SERIAL
/* Set IO pinmux to UART again */
set_uart_io();
#endif
printk("WARNING: Failed to enter SoC standby mode 1 due to unknown reason.\n");
while (1) {
/* Busy wait */
}
}
获取本次系统复位的原因,本例程中仅检测 3 种情况(更多复位情况请参考 soc.h 文件中的相关定义):
芯片 nRESET 引脚复位(nRESET 按键按下)
NVIC System Reset 软件复位(JLink 烧录后自动触发,或者软件调用
sys_reboot(0)
触发)Standby Mode 1 LP Timer Wakeup 唤醒复位
将 UART Pinmux IO 恢复为默认的 GPIO 状态
使芯片进入 Standby Mode 1 模式,并配置为 LP Timer 唤醒,唤醒时间为 5s,且所有 SRAM 均不保持
需要注意
soc_enter_standby_mode_1()
接口第三个参数为 LP Timer 定时,其单位为 32K Clock Count,而不是时间, 因此在使用过程中需要将预期定时的时间LPTMR_TIMEOUT_MS
通过程序中的公式转换为 32K Count 后再将其传入函数中。若芯片未成功进入 Standby Mode 1 模式,则重新配置 UART Pinmux IO 状态并打印 Warning log
5.3.2 UART 引脚 Pinmux 配置与恢复¶
若芯片在使用过程中有诸如 UART 等外设模块配置了 IO,则芯片在进入低功耗状态前,要考虑将其 Pinmux 功能切换为 GPIO 功能; 若有必要,还需在芯片唤醒后将其功能切换回 UART 等功能以继续使用。
#ifdef CONFIG_SERIAL
__ramfunc static void reset_uart_io(void)
{
/* Wait until all UART0 data sending done before entering low power mode */
while (!(UART_GetLineStatus(UART0) & UART_LINE_TXSR_EMPTY)) {
/* Busy wait */
}
/*
* Reset UART PINs to GPIO function and disable digital input path of UART Rx PIN
* to avoid possible current leakage.
*/
SYS_SET_MFP(P0, 0, GPIO);
SYS_SET_MFP(P0, 1, GPIO);
GPIO_DisableDigitalPath(P0, BIT1);
}
__ramfunc static void set_uart_io(void)
{
/* Resume UART PIN Configurations to reenable UART function */
SYS_SET_MFP(P0, 0, UART0_TX);
SYS_SET_MFP(P0, 1, UART0_RX);
GPIO_EnableDigitalPath(P0, BIT1);
}
#endif
reset_uart_io()
函数用于:等待串口 Log 数据都打印完毕(即 UART0 Tx FIFO 应为空)
P00 引脚 Pinmux 功能由 UART0 Tx 切换回 GPIO
P01 引脚 Pinmux 功能由 UART0 Rx 切换回 GPIO,并将其数字输入功能关闭
set_uart_io()
函数用于:P00 引脚 Pinmux 功能由 GPIO 重新切换成 UART0 Tx
P01 引脚 Pinmux 功能由 GPIO 重新切换成 UART0 Rx,并将其数字输入功能重新打开
6 RAM/Flash资源使用情况¶
Memory region Used Size Region Size %age Used
FLASH: 19184 B 384 KB 4.88%
SRAM: 6952 B 64 KB 10.61%